
CS2: Computer Science

Level 2

Study Unit

6

Introduction to Data

analysis with pandas

Introduction to Data

Analysis with Pandas

Outline

 Introduction to Pandas

 Series and DataFrames

 Importing and exporting

dataset

 Data cleaning and

preprocessing

 Exploratory data analysis

 Computing Descriptive

Statistics

 Combining and Merging

Datasets

Study Unit Duration

This Study Unit requires a

minimum of 3 hours’ formal

study time. You may spend an

additional 2-3 hours on

revision.

Preamble

Pandas is a popular Python package for data science. It offers powerful,

expressive, and flexible data structures that make data cleaning and

analysis fast and easy in Python. Pandas is an open source data analysis

and manipulation tool that is often used in tandem with numerical

computing tools like NumPy and SciPy, analytical libraries like

statsmodels and scikit-learn, and data visualization libraries like

matplotlib and Seaborn. You can think of Pandas as an extremely

powerful version of spreadsheet like Microsoft Excel, with a lot more

features.

Learning Outcomes of Study Unit 6

Upon completion of this study unit, you should be able to:

6.1 Work with Pandas Package to create series, Data frame and get

information about your data

6.2 Manipulate Data Frames with Pandas

6.3 Load data in any file and export them

6.4 Clean and preprocess your data

6.5 Carry out exploratory data analysis with Pandas Profiling

6.6 Aggregate and do group operation with your data

6.7 Join, Combine and reshape data frame with Pandas

CS2: Computer Science

Level 2

Terminologies, Acronyms and their Meaning

AI Artificial Intelligence

ML Machine Learning

RL Reinforcement Learning

DL Deep learning

EDA Exploratory Data Analysis

NaN Not a Number

np Numpy

pd Pandas

os Operating system

AI Artificial Intelligence

TF TensorFlow

NULL Missing value

6.1 Work with Pandas Package to create series, Data frame and get

information about your data

If you installed the Anaconda distribution of Python - it includes Python, NumPy, and other

commonly used packages for scientific computing and data science. Therefore, no further

installation steps are necessary. We recommend you use the Anaconda distribution of Python as

you begin your data science journey.

If you use a version of Python from python.org or a version of Python that came with your

operating system, the Anaconda Prompt and conda or pip can be used to install NumPy.

Install Pandas with the Anaconda Prompt

To install Pandas, open the Anaconda Prompt and type:

conda install pandas

Type y for yes when prompted.

Install Pandas with pip

To install Pandas with pip, bring up a terminal window and type:

pip install pandas

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual

CS2: Computer Science

Level 2

This command installs Pandas in the current working Python environment.

Importing the Pandas library

To import pandas, we usually import it with its alias, pd.

import pandas as pd

Core components of pandas

The two primary components of pandas are the Series and DataFrame. A Series is essentially a

column, and a DataFrame is a multi-dimensional table made up of a collection of Series.

Series and Data Frame

Pandas Series

A Series is a one-dimensional array-like object containing a sequence of values and capable of

holding any data type with axis labels or index. An example of a Series object is one column from

a DataFrame. That is, Pandas Series is formed from only an array of data.

How to create Pandas Series

Example 1

Gender = pd.Series(["Male", "Female", "Female", "Female", "Male", "Female", "Male", "Female", "Male"

, "Female"])

Gender

CS2: Computer Science

Level 2

type(Gender) # This is a pandas series type

<class ‘pandas.core.series.Series’>

Example 2

Country = pd.Series(["Uganda", "Ethiopia", "Rwanda", "Somalia", "Sudan", "Kenya", "Uganda", "Kenya"

, "Somalia", "Rwanda"])

Country

type(Country)

<class ‘pandas.core.series.Series’>

Example 3

Age = pd.Series([11, 17, 15, 17, 13, 11, 9, 18, 13, 16])

Age

CS2: Computer Science

Level 2

type(Age)

<class ‘pandas.core.series.Series’>

Class activity 8

Peer to Peer Interaction

 Visit the LMS, locate forum activity and participate in the

discussion

Consider the dataset below:

Create Pandas Series for each of the

columns in the dataset.

CS2: Computer Science

Level 2

6.1.1 Pandas DataFrame

A DataFrame represents a rectangular table of data and contains an ordered collection of columns,

each of which can be a different value type (integer, float, string, boolean, etc.). We can think of a

DataFrame as a bunch of Series objects put together to share the same index.

How to create Pandas DataFrame

There are many ways to create a DataFrame from scratch, but a great option is to create it from a

dictionary.

Creating DataFrame from a Dictionary

Among many things that can serve as input to make a Pandas DataFrame is a dict (Dictionary).

To make a data frame from a dictionary, you will need to pass it to the DataFrame() function in

the data argument.

Example 1

registrations_dict = {

 "Gender": ["Male", "Female", "Female", "Female", "Male", "Female", "Male", "Female", "Male", "Fem

ale"],

"Country": ["Uganda", "Ethiopia", "Rwanda", "Somalia", "Sudan", "Kenya", "Uganda", "Kenya", "Somali

a", "Rwanda"],

"Age": [11, 17, 15, 17, 13, 11, 9, 18, 13, 16]

}

registrations_dict

{‘Gender’: [‘Male’, ‘Female’, ‘Female’, ‘Female’, ‘Male’, ‘Female’, ‘Male’, ‘Female’, ‘Male’,

‘Female’], ‘Country’: [‘Uganda’, ‘Ethiopia’, ‘Rwanda’, ‘Somalia’, ‘Sudan’, ‘Kenya’, ‘Uganda’,

‘Kenya’, ‘Somalia’, ‘Rwanda’], ‘Age’: [11, 17, 15, 17, 13, 11, 9, 18, 13, 16]}

type(registrations_dict)

<class ‘dict’>

And then pass the result to the pandas DataFrame constructor:

registrations_df = pd.DataFrame(registrations_dict)

registrations_df

CS2: Computer Science

Level 2

The resulting DataFrame will have its index assigned automatically as with Series, and the columns

are placed unordered. If you specify a sequence of columns, the DataFrame’s columns will be

arranged in that order.

registrations_df = pd.DataFrame(registrations_dict, columns = ["Country", "Gender", "Age"])

registrations_df

CS2: Computer Science

Level 2

Example 2

This example is for corona virus (COVID-19) report as of November 25, 2020.

COVID19data = {

"Country": ["Burundi", "Ethiopia", "Kenya", "Rwanda", "Somalia", "Tanzania", "Uganda", "Sudan"],

 "Total Cases": [673, 107109, 79322, 5750, 4445, 509, 18406, 16431],

 "Total Deaths": [1, 1664, 1417, 47, 113, 21, 186, 1202],

 "Total Recovered": [575, 66574, 52974, 5241, 3412, 183, 8764, 9854],

 "Active Cases" : [97, 38871, 24931, 462, 920, 305, 9456, 5375],

 "Population" : [12029114, 116082175, 54237961, 13078334, 16066789, 60399786, 46304101, 4

4252054]

}

COVID19data_df = pd.DataFrame(COVID19data, columns= ["Country", "Total Cases", "Total Deaths", "

Total Recovered", "Active Cases", "Population"])

COVID19data_df

We shall be using registrations_df and COVID19data_df dataframes in our various examples

henceforth.

6.1.2 Viewing your data

For large DataFrames, we can select the first five observations or rows by using .head() attribute

and the last five observation by using .tail() attribute.

CS2: Computer Science

Level 2

Example 1

registrations_df.head()

registrations_df.tail()

Example 2

COVID19data_df.head()

COVID19data_df.tail(3)

CS2: Computer Science

Level 2

6.1.3 Getting information about your data

.info() method

.info() attribute provides the essential details about your dataset, such as the number of rows and

columns, the number of non-null values, what type of data is in each column, and how much

memory your DataFrame is using.

Example 1

registrations_df.info()

Seeing the datatype quickly is actually quite useful in data cleaning and analysis phases

Example 2

COVID19data_df.info()

CS2: Computer Science

Level 2

.shape method

Another useful attribute is .shape, which outputs just a tuple of (rows, columns):

Example 1

registrations_df.shape

(10, 3)

The students’ registration data has 10 rows and 3 columns.

Note that .shape has no parentheses and is a simple tuple of format (rows,

columns). So, we have 10 rows and 3 columns in our students’ registration

DataFrame.

Example 2

COVID19data_df.shape

(8, 6)

The COVID-19 has 8 rows and 6 columns.

It is important to note that you will be going to .shape a lot when cleaning and transforming data.

For example, you might filter some rows based on some criteria and then want to know quickly

how many rows were removed or left in the dataset.

Display the index and columns in a DataFrame

CS2: Computer Science

Level 2

.index and .columns

We can use .index and .columns attribute to see the list of observations and column names in our

dataframe.

Example 1

Let’s check the index and columns in the students’s registration DataFrame

registrations_df.index

RangeIndex(start=0, stop=10, step=1)

The observation/index is from 0 to 9. Remember Numpy array, 0: 10 means 0, 1, 2, ⋯, 9.

registrations_df.columns

Index([‘Country’, ‘Gender’, ‘Age’], dtype=‘object’)

The column names in the students registration dataframe are Country, Gender, and Age.

Example 2

Let’s check the columns in the COVID-19 DataFrame

COVID19data_df.columns

Index([‘Country’, ‘Total Cases’, ‘Total Deaths’, ‘Total Recovered’, ‘Active Cases’, ‘Population’],

dtype=‘object’)

The column names in the COVID-19 data are Country, Total Cases, Total Deaths, Total

Recovered, Active Cases, and Population

6.2. Selection and Indexing of DataFrame

Let’s learn various methods to grab data from a DataFrame.

6.2.1 Selecting a Series in a DataFrame

Remember our student’s registration DataFrame:

Registrations_df

CS2: Computer Science

Level 2

A column in a DataFrame can be retrieved as a Series:

registrations_df['Country']

registrations_df.Gender

CS2: Computer Science

Level 2

registrations_df[‘column’] works for any column name, but

registrations_df.column only works when the column name is a valid Python

variable name. That is, it follows Python naming convention (no space, no

special character, not starting with number, etc.)

6.2.2 Selecting two or more columns in a dataframe

We pass a list of column names to select two or more columns in a dataframe

Example 1

registrations_df[["Country", "Gender"]]

CS2: Computer Science

Level 2

Example 2

COVID19data_df # Did you remember this dataframe?

Remember we saw that df.column only works when the column name is a valid Python variable

name.

COVID19data_df.Total Cases

We have an error because the column name Total Cases is a not a valid variable name i.e. it has a

space. An alternative to df.column in selecting a variable name is df[“column”].

COVID19data_df["Total Cases"]

COVID19data_df[["Country", "Population", "Total Cases"]] # Total Cases is COVID-19 cases

CS2: Computer Science

Level 2

6.2.3 Selection with .loc and .iloc attribute

The loc[] and iloc[] DataFrame attribute enable you to select a subset of the rows and columns

from a DataFrame with NumPy-like notation using either axis labels (df.loc[]) or integers

(df.iloc[]). The general format for both loc[] and iloc[] are df.loc[row, col] and df.iloc[row, col]

where df is the name of your DataFrame while the [row, col] specifies the row and column index

of the DataFrame. Remember Python counting starts at 0, so the first row is row zero.

.loc[]

As a preliminary example, let’s select first three rows and columns such as Country and Population

by using df.loc[].

Example 1

df.loc[row, col] is for selection by column label.

COVID19data_df.loc[0:2, ["Country", "Population"]]

CS2: Computer Science

Level 2

In example 1, we selected the first three observations and variables Country and Population.

Please note that .loc[] index position is inclusive i.e. 0: 5 means 0, 1, 2, 3, 4, 5.

This is different from Numpy array that 0: 5 is 0, 1, 2, 3, 4.

Example 2

df.loc[row, col] is for selection by column label.

COVID19data_df.loc[:, ["Country", "Total Cases"]]

We selected all the observations (:) and columns Country and COVID-19 Total Cases

.iloc[]

df.iloc[row, col] is for selection by column index or position. First, let us see the column index by

using .columns attribute

COVID19data_df.columns

CS2: Computer Science

Level 2

The columns Country and Population correspond to 0 and 5 indexes

COVID19data_df.iloc[0:3, [0, 5]]

In example 2, we selected the first three observations and variables Country and Population.

Please note that .iloc[] index position is exclusive i.e. 0: 3 means 0, 1, 2. This

is like Numpy array.

Example 1

Select all the observations and columns Gender and Age in the student’s registration list using

1. .iloc[] attribute

2. .loc[] attribute

registrations_df

CS2: Computer Science

Level 2

With .iloc[] attribute

registrations_df.iloc[:, [1, 2]] # .iloc[] selection is by the position.

With loc[] attribute

registrations_df.loc[:, ["Gender", "Age"]] # .loc[] selection is by the label.

CS2: Computer Science

Level 2

Example 2

Select the last five students in the student’s registration dataframe

registrations_df

Method 1

registrations_df.tail(5)

CS2: Computer Science

Level 2

Method 2

registrations_df.loc[5:9, :] # remember .loc[] attribute is inclusive

Method 3

registrations_df.iloc[5:10, :] # remember .iloc[] attribute is exclusive

6.2.4 How to rename column names in a DataFrame

We can use the .rename() method to rename certain or all columns in a DataFrame via a dict

(dictionary). Let’s rename Total Cases to COVID-19 cases, and Total Deaths to COVID-19

Death cases in our COVID19data_df that is shown below:

CS2: Computer Science

Level 2

COVID19data_df

COVID19data_df.rename(columns= {
 "Total Cases": "COVID-19 Cases",
 "Total Deaths": "COVID-19 Death Cases"
})

As you can see, the .rename() attribute takes the columns as the input in which we pass the

dictionary containing the old and new column names that we want to rename in the DataFrame.

The result is not saved to any variable until we save it. This happens because Pandas wants to show

us whether our output or result is correct and we can amend or save automatically with the inplace

argument as shown below:

CS2: Computer Science

Level 2

COVID19data_df.rename(columns= {

 "Total Cases": "COVID-19 Cases",

 "Total Deaths": "COVID-19 Death Cases"

}, inplace = True)

We can see the result by calling out COVID19data_df

COVID19data_df

Example 1

Using students registration dataframe, rename Gender to Sex

registrations_df

CS2: Computer Science

Level 2

registrations_df.rename(columns= {"Gender": "Sex"})

6.2.5 Adding a Column to Your DataFrame

We can create a new column called Fatality rate from our COVID-19 data.

Fatality rate =
COVID-19 Death Cases

COVID-19 Cases

CS2: Computer Science

Level 2

Fatality rate is the proportion of deaths from a certain disease compared to the total number of

people diagnosed with the disease for a particular period.

Let’s see the quick overview of COVID19data_df DataFrame

COVID19data_df.head()

We want to calculate the fatality rate of COVID-19 for each of the countries. Do you remember

how to get or extract a series from a DataFrame?

df.column_name or df["column_name].

COVID19data_df["Fatality rate"] = COVID19data_df["COVID-19 Death Cases"]/COVID19data_df["CO

VID-19 Cases"]

COVID19data_df[“Fatality rate”] is our new series or column while COVID19data_df[“COVID-

19 Death Cases”] and COVID19data_df[“COVID-19 Cases”] are the existing series that we want

to use to get the new column. The resulting DataFrame is shown below:

COVID19data_df

CS2: Computer Science

Level 2

Example 1

Create a new column called Discharge rate from the COVID-19 DataFrame.

Discharge rate =
Total Recovered

COVID-19 Cases

Discharge rate is the proportion of people that recovered from a certain disease compared to the

total number of people diagnosed with the disease for a particular period.

COVID19data_df["Discharge rate"] = COVID19data_df["Total Recovered"]/COVID19data_df["COVID-

19 Cases"]

and the resulting DataFrame is:

COVID19data_df

CS2: Computer Science

Level 2

6.2.6 Dropping/Removing Columns from a DataFrame

You can drop or remove a column from an existing DataFrame by using .drop() attribute. In this

section, we use DataFrames namely registrations_df and COVID19data_df

registrations_df.head()

Example 1

Let’s drop the Country column from the registrations_df

registrations_df.drop("Country", axis = "columns")

As we can see from the resulting DataFrame that the column Country has been dropped. We

specified axis to be “columns” to show that what we want to drop is from the columns. The axis

arguement takes two values; 1 (or “columns”) to drop columns and 0 (or “rows”) to drop index.

CS2: Computer Science

Level 2

We can save the resulting DataFrame as a new DataFrame registrations_df_drop or use inplace

= True to replace the original DataFrame

registrations_df_drop = registrations_df.drop("Country", axis = "columns")

registrations_df_drop

Example 2

Let’s drop the Active Cases and Population columns from the COVID19data_df DataFrame

COVID19data_df

CS2: Computer Science

Level 2

We can pass the list containing the names of the columns to drop in the .drop() attribute. For

example:

remember to remove column(s) we can specify axis = 1 or "columns"

COVID19data_df.drop(["Active Cases", "Population"], axis = 1)

Note: It is important to save the resulting DataFrame.

COVID19data_df_drop = COVID19data_df.drop(["Active Cases", "Population"], axis = 1)

and if we use COVID19data_df.drop([“Active Cases”, “Population”], axis = 1, inplace =

True), that will replace the full DataFrame to a DataFrame where columns “Active Cases” and

“Population” has been removed or dropped. That may be dangerous because you have destroyed

the original DataFrame with the inplace = True.

6.2.7 Conditional filtering of a DataFrame

You can filter a DataFrame based on a condition of one or more Series in the DataFrame.

Example 1

In our registrations_df DataFrame, we can show a DataFrame where only Female are available:

registrations_df

CS2: Computer Science

Level 2

Step 1:

Select Gender Series from the DataFrame

step1 = registrations_df["Gender"]

step1

Step 2:

Use comparison = = operator to distinguish whether they are “Female” or not.

step2 = registrations_df["Gender"] = = "Female"

step2

CS2: Computer Science

Level 2

Step 3:

Use the result of step 2 to select/filter the registrations_df DataFrame

registrations_df[step2]

We do step 1 to 3 in one line of code as shown below:

registrations_df[registrations_df["Gender"] = = "Female"]

CS2: Computer Science

Level 2

Example 2

In the COVID19data_df DataFrame, show a DataFrame where:

COVID-19 Cases is less than 3000

– The resulting DataFrame has how many rows?

COVID-19 Death Cases is less than 50 and Total Recovered is 200

– The resulting DataFrame has how many rows?

COVID19data_df

Solution 1

COVID-19 Cases is less than 3000

– The resulting DataFrame has how many rows?

COVID19data_df_sol1 = COVID19data_df[COVID19data_df["COVID-19 Cases"] < 3000]

COVID19data_df_sol1

COVID19data_df_sol1.shape

CS2: Computer Science

Level 2

(2, 8)

There are two rows in this DataFrame

Solution 2

COVID-19 Death Cases is less than 50 and and Total Recovered is less than 200

– The resulting DataFrame has how many rows?

As we can see from the question that the condition is based on two Series/columns:

– COVID-19 Death Cases is less than 50

– Total Recovered is less than 200

COVID19data_df_sol2 = COVID19data_df[(COVID19data_df["COVID-19 Death Cases"] < 50) & (COV

ID19data_df["Total Recovered"] < 200)]

COVID19data_df_sol2

COVID19data_df_sol2.shape

(1, 8)

The resulting DataFrame has just one row.

Review of DataFrame

We have learnt Pandas Series and DataFrame so far and based on what you have seen and

understood about Series, DataFrame, and their various attribute or methods.

CS2: Computer Science

Level 2

Source: International Trade Center (ITR)

In the figure above, a girl was carrying many flowers from the National Flower of Ethiopia. Prof.

Francisca Oladipo measured the length and width of different species of flowers and dataset shown

below were generated.

1. Create a DataFrame using the sample of the dataset from the National Flower of Ethiopia

(This was adapted from Iris data)

2. How many rows and columns are in the dataset?

3. How many series are in the DataFrame?

CS2: Computer Science

Level 2

4. Rename species variable to flower_categories

5. Add sepal_length and sepal_width together and call the resulting series sepal_length_width

6. Drop the column petal_width from the DataFrame

7. From 6, select a DataFrame where sepal_length is greater than 5.5 and name it perfect_data

Solution 1

Create a DataFrame using the sample of dataset from the National Flower of Ethiopia

First, we need to import necessary libraries such as numpy, pandas, etc.

import numpy as np

import pandas as pd

To create a DataFrame, we need to first create a dict (dictionary) and then pass the result to

DataFrame constructor

flower_data_dict = {

"sepal_length": [5.1, 5, 5.4, 5.5, 6.5, 6.7, 7.2, 6.2],

"sepal_width": [3.5, 3.6, 3.9, 2.3, 2.8, 3.3, 3.2, 2.8],

"petal_length": [1.4, 1.4, 1.7, 4, 4.6, 5.7, 6, 4.8],

"petal_width": [0.2, 0.2, 0.4, 1.3, 1.5, 2.1, 1.8, 1.8],

"species": ["Rose", "Rose", "Rose", "Lily", "Lily", "Carnation", "Carnation", "Carnation"]

}

flower_data_dict

{‘sepal_length’: [5.1, 5, 5.4, 5.5, 6.5, 6.7, 7.2, 6.2], ‘sepal_width’: [3.5, 3.6, 3.9, 2.3, 2.8, 3.3, 3.2,

2.8], ‘petal_length’: [1.4, 1.4, 1.7, 4, 4.6, 5.7, 6, 4.8], ‘petal_width’: [0.2, 0.2, 0.4, 1.3, 1.5, 2.1,

1.8, 1.8], ‘species’: [‘Rose’, ‘Rose’, ‘Rose’, ‘Lily’, ‘Lily’, ‘Carnation’, ‘Carnation’, ‘Carnation’]}

As you know, this is a type dict

type(flower_data_dict)

<class ‘dict’>

We now pass the result to pd.DataFrame()

CS2: Computer Science

Level 2

flower_data_df = pd.DataFrame(flower_data_dict)

flower_data_df

As you can see, the steps to creating a DataFrame are just two:

1. Create a dictionary for the data

2. Pass the result to pd.DataFrame() function

Solution 2

How many rows and columns are in the dataset?

You can get the number of rows and columns in your DataFrame by using .shape attribute

flower_data_df.shape()

This throws an error TypeError: ‘tuple’ object is not callable because, .shape attribute does not

have a parenthesis. Please take note of that!

flower_data_df.shape

(8, 5)

The DataFrame/dataset has 8 rows and 5 columns

Solution 3

How many series are in the DataFrame?

CS2: Computer Science

Level 2

Series of a DataFrame is the same thing as columns or variable in that DataFrame. So therefore,

we have 5 series in this DataFrame

Solution 4

rename species variable to flower_categories

To rename species variable to flower_categories we shall use .rename() attribute and then pass

dict (dictionary) to it.

flower_data_df.rename(columns= {

 "species": "flower_categories"

 })

Solution 5

Add sepal_length and sepal_width together and call the resulting series sepal_length_width

To create sepal_length_width series, add the series of sepal_length and sepal_width together.

flower_data_df["sepal_length_width"] = flower_data_df.sepal_length + flower_data_df.sepal_width

flower_data_df

CS2: Computer Science

Level 2

Solution 6

Drop the column petal_width from the DataFrame

flower_data_df.drop(["petal_width"])

This threw an error because axis argument has not been specified.

CS2: Computer Science

Level 2

flower_data_df.drop(["petal_width"], axis = "columns")

petal_width has been removed from the columns. Let’s save the result as flower_data_df_drop

flower_data_df_drop = flower_data_df.drop(["petal_width"], axis = "columns")

flower_data_df_drop

Solution 7

From solution 6, select a DataFrame where sepal_length is greater than 5.5 and name it

perfect_data

CS2: Computer Science

Level 2

We shall use our new DataFrame flower_data_df_drop to filter where sepal_length is greater

than 5.5

perfect_data = flower_data_df_drop[flower_data_df_drop["sepal_length"] > 5.5]

perfect_data

6.3 Import data with Pandas

As you can see from various examples, it is so tedious to start creating DataFrame from scratch.

In the data science world, data will be available for you on a spreadsheet such as MS-Excel. Our

job as a data scientist is to import those datasets using Pandas. Pandas can import different format

of data such as .xlsx(Excel data), .csv(comma separated value), .sav(SPSS data), .dat(STATA

data), or any other data online (the web.)

How to read in data

It’s quite simple to load data from various file formats into a DataFrame. In this section, you will

learn how to import different file format with Pandas.

CS2: Computer Science

Level 2

Current working directory

Your data must be in the same working directory you are currently working in. Your current

working directory is where Python is running. For example, pwd (print working directory) shows

you your working directory.

pwd

C:\\Users\\OGUNDEPO EZEKIEL .A\\Desktop\\Data and Decision\\Introduction to data science

1\\Scripts

Note that my working directory will be different from your working

directory. In fact, individual working directory will always be

different.

CS2: Computer Science

Level 2

As you can see, my current working directory is C:\\Users\\OGUNDEPO EZEKIEL

.A\\Desktop\\Data and Decision\\Introduction to data science 1\\Scripts

You can also change the current working directory by using cd (change directory) command by

specify the destination path. It can be absolute or relative path. For example, let’s change the

working directory to the folder that hosts our datasets by using:

cd datasets

CS2: Computer Science

Level 2

Let’s confirm our current working directory now with pwd command

pwd

As you can see, I have changed my working directory from C:\Users\OGUNDEPO EZEKIEL

.A\Desktop\Introduction to Data Science to C:\Users\OGUNDEPO EZEKIEL

.A\Desktop\Introduction to Data Science\datasets

As you can see, I have changed my working directory from `C:\\Users\\OGUNDEPO EZEKIEL

.A\\Desktop\\Data and Decision\\Introduction to data science 1\\Scripts` to

`C:\\Users\\OGUNDEPO EZEKIEL .A\\Desktop\\Data and Decision\\Introduction to data science

1\\Scripts\\datasets

Relative and absolute path

Alternatively, we can work with a relative path. For example, using `datasets/` instead of absolute

path or full path like `C:/Users/OGUNDEPO EZEKIEL .A/Desktop/Data and

Decision/Introduction to data science 1/Scripts/datasets`.

An absolute path specifies the location of a file or directory from the root directory. In other words,

an absolute path is a complete path from start of actual file system. By contrast, a relative path

CS2: Computer Science

Level 2

starts from some given working directory, avoiding the need to provide the full absolute path. For

example, `datasets/Ethiopian_flowers.csv` is a relative path.

datasets/Ethiopian_flowers.csv is a relative path while C:/Users/OGUNDEPO

EZEKIEL.A/Desktop/Data and Decision/Introduction to data science

1/Scripts/datasets/ Ethiopian_flowers.csv is an absolute path

Import data from CSV

With .csv (comma-separated value) format all you need is pd.read_csv() command to load in the

data as a DataFrame.

Example 1

Load the Ethiopian's flowers dataset (Ethiopian_flowers.csv) that was adapted from the well-

known Iris dataset. Remember the first thing is to import all the necessary libraries such as numpy,

pandas, etc.

The data is in the datasets folder or directory.

CS2: Computer Science

Level 2

import numpy as np

import pandas as pd

ethiopian_flower = pd.read_csv("datasets/Ethiopian_flowers.csv")

You have imported Ethiopian flowers successfully! Bravo! Henceforth, when you import a dataset,

the result is always a DataFrame.

type(ethiopian_flower)

<class ‘pandas.core.frame.DataFrame’>

So therefore, all the pandas attributes that have been discussed so far can be applied.

Let’s see what is in ethiopian_flower that we just imported. Functions such as .head(), .tail(),

.shape, etc. are useful in exploring our dataset.

ethiopian_flower.head(10) # To see the first ten observations

CS2: Computer Science

Level 2

ethiopian_flower.tail(5) # To see the last five observations

ethiopian_flower.shape

(350, 5)

Ethiopian flower dataset has 350 observations/rows with 5 variables/columns

ethiopian_flower.columns # list all the column names in the dataset

Index([‘Sepal.Length’, ‘Sepal.Width’, ‘Petal.Length’, ‘Petal.Width’, ‘Species’], dtype=‘object’)

The variables in the dataset are Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, and

Species.

ethiopian_flower.info()

CS2: Computer Science

Level 2

.info() attribute shows us that ethiopian_flower dataset has 4 variables are float datatypes and 1

variable that is object (or string) datatype.

Importing data from Excel

With .xlsx or xls format, all you need is pd.read_excel() command to load in the data

Example 1

Load the East-Africa-names.xlsx which was scraped from

https://www.behindthename.com/submit/names/usage/eastern-african. Since you have imported

all the necessary libraries such as numpy and pandas, you don’t need to import them here again.

https://www.behindthename.com/submit/names/usage/eastern-african

CS2: Computer Science

Level 2

Excel Workbook can have many worksheets and each can host different data. While importing

your data, you need to specify the index of the sheet that you want to import. Remember Python

index starts from 0.

east_africa_names = pd.read_excel("datasets/East-Africa-names.xlsx", sheet_name = 0)

You have imported East Africa names successfully! You are now an expert in importing file!

Let’s see various names in the east_africa_names data that we just imported.

east_africa_names.head(20)

Importing data from STATA

With .dta format, all you need is pd.read_dta() command to load in the data

CS2: Computer Science

Level 2

Example 1

Load the penguins.dta data. The palmer penguins data contains size measurements for three

penguin species observed on three islands in the Palmer Archipelago, Antarctica.

CS2: Computer Science

Level 2

Penguins from STATA

penguis_data = pd.read_stata("datasets/penguins.dta")

penguis_data.head()

penguis_data.tail()

CS2: Computer Science

Level 2

penguis_data.shape

(337, 7)

Penguins data has 343 rows and 7 columns.

Import data from JSON

JSON stands for JavaScript Object Notation. With .json format, all you need is pd.read_json()

command to load in the data

Example 1

Load the Ugandan_women.json data. This data set gives the average heights and weights for

Ugandan women aged 30–39.

ugandan_women = pd.read_json("datasets/Ugandan_women.json")

ugandan_women.head()

ugandan_women.tail()

CS2: Computer Science

Level 2

ugandan_women.shape

(300, 2)

The dataset consists of 300 rows and 2 columns

Import data from SPSS

We can also import data from the Statistical Package for the Social Sciences (SPSS) software with

Pandas. Note, however, we need to install the pyreadstat first.

How to install Pyreadstat

Open up your Anaconda Prompt or Terminal and run

pip install pyreadstat

Pandas depends on pyreadstat for reading .sav files. As always, we need to import pandas as

pd.

CS2: Computer Science

Level 2

Example 1

Load money_transfer_transactions.sav data. This data set is about money transaction in Uganda,

Somalia, Kenya, Ethiopia South Sudan, Tanzania, and Rwanda.

import pandas as pd

money_transfer = pd.read_spss("datasets/money_transfer_transactions.sav")

money_transfer.head()

money_transfer.tail()

CS2: Computer Science

Level 2

money_transfer.shape

(500, 10)

Money transaction dataset has 500 observations/rows with 10 variables/columns.

6.3.1 Export data with Pandas

You can save DataFrame in Python to any file of your choice. Similar to the ways we read in data,

pandas provide intuitive commands to save it:

df.to_csv(‘new_file.csv’) # to save as csv file

df.to_excel(‘new_file.xlsx’) # to save as Excel file

df.to_stata(‘new_file.dta’) # to save as STATA file

df.to_spss(‘new_file.sav’) # to save as SPSS file

df.to_json(‘new_file.json’) # to save as JSON file

When we save as .csv, .xlsx, or any file formats, all we have to input into those functions is our

desired filename with the appropriate file extension.

Example

Import fatal-police-shootings-data.csv data as police_shooting and export the resulting

DataFrame as:

3. .dta

4. .xlsx

5. .json

Solution

import pandas as pd

CS2: Computer Science

Level 2

police_shooting = pd.read_csv("datasets/fatal-police-shootings-data.csv")

police_shooting.head() # To see the first 5 observation

police_shooting.shape # To check the dimension of the dataset

(5793, 14)

police_shooting.info()

To export as .dta (STATA file), we use:

police_shooting.to_stata("datasets/police_shooting.dta")

To export as .xlsx (Excel file), we use:

police_shooting.to_excel("datasets/police_shooting.xlsx")

To export as .json (JSON file), we use:

police_shooting.to_json("datasets/police_shooting.json")

We then check our working directory for all the data that we just exported.

CS2: Computer Science

Level 2

6.4 Data cleaning and preprocessing

6.4.1 Working with missing data

In this section, we will discuss missing values also referred to as NA, NaN or NULL in pandas.

When exploring data, you’ll most likely encounter missing or null values, which symbolically

represent non-existent values.

We can check whether there are missing values in one or more columns of a DataFrame by using

.isna() or .isnull() while .isna().sum() or .isnull().sum() can be used to get the number of

missing values in each of the columns of a DataFrame.

Example 1

Import somalia_women.csv dataset and count the number of missing values in its columns.

import numpy as np

import pandas as pd

CS2: Computer Science

Level 2

somalia_women = pd.read_csv("datasets/Somalian_women.csv")

somalia_women.head()

Let’s check whether there is a missing value by using .isna() or .isnull().

somalia_women.isna()

As you can see, there are some values that are missing in height and weight of somalia_women

DataFrame. To get the number of missing values we use .isna().sum() or .isnull().sum().

somalia_women.isna().sum()

height 4

weight 5

CS2: Computer Science

Level 2

dtype: int64

height has 4 missing values while weight has 5 missing values.

Example 2

Import police_shooting.xlsx which is in the datasets directory and examine its missing values.

Since we have imported all the necessary libraries in Example 1, we just use it directly to import

policeshooting.xlsx file.

police_shooting = pd.read_excel("datasets/police_shooting.xlsx")

We can then use .isna().sum() to check its missing values.

police_shooting.isna().sum()

As you can see, there are missing values in armed, age, gender, race, flee, longitude and latitude

columns

6.4.2 Data imputation

There are two options in dealing with missing values:

1. Get rid of rows or columns with nulls

2. Replace nulls with non-null values which is known as data imputation.

CS2: Computer Science

Level 2

1. Get rid of rows or columns with nulls

Every data scientist or analyst regularly face the problem of whether to remove (drop) the missing

values (NA, NULL, NAN) or impute them. This is a decision that requires intimate knowledge of

your data and its context. Overall, removing null data is only suggested if you have a small amount

of missing data. Remove nulls is pretty simple by using .dropna().

Example 1

For example, let’s remove the missing values in the Somalia women dataset. Remember in our

somalia_women DataFrame, there are some missing values in both height and weight columns.

somalia_women.head()

Let’s use .shape to check the number of rows and columns before removing any missing values.

somalia_women.shape

(250, 2)

somalia_women.isna().sum()

Now let’s drop those missing values with .dropna() attribute. This action will delete any row with

at least a single NA, Null, or NAN value but it will return a new DataFrame without altering the

original one. You could specify inplace=True in this method as well.

somalia_women_dropna = somalia_women.dropna()

somalia_women_dropna

CS2: Computer Science

Level 2

somalia_women_dropna.shape

(241, 2)

somalia_women.shape

(250, 2)

You will notice that dropna() has reduced the number of rows from 250 to 241.

Other than just dropping rows, you can also drop columns with null values by setting axis=

“columns” or 1

Example 2

Import East-Africa-names.csv as east_africa and remove any column with missing values.

east_africa = pd.read_csv("datasets/East-Africa-names.csv", encoding = "ISO-8859-1")

Important note

Sometimes there can be UnicodeDecodeError when reading CSV file in Pandas with Python. You

will notice that I used encoding = “ISO-8859-1” option to stop this error.

CS2: Computer Science

Level 2

Class activity 8 (Peer to peer review activity)

Okay, let’s continue our work!

east_africa.head()

east_africa.isna().sum()

There are some missing values in Origin.2, Origin.3, Origin.4 of east_Africa DataFrame

Let’s check the number of rows and columns before using .dropna(axis = “columns”) on the

east_africa DataFrame.

Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the

discussion

Try the code below and notice whether it throws an error or not

east_africa = pd.read_csv(“datasets/East-Africa-names.csv”)

Correct the error by using encoding = “ISO-8859-1” in the

pd.read_csv() option.

CS2: Computer Science

Level 2

east_africa.shape

(1128, 6)

There are 1128 rows and 6 columns. Now let us remove columns with some missing values with

.dropna(axis = “columns”).

east_africa_dropna = east_africa.dropna(axis = "columns")

east_africa_dropna

east_africa_dropna.shape

(1128, 3)

As you can see, .dropna(axis = “columns”) has removed all columns with missing values.

2. Replace nulls with non-null values which is known as data imputation

Imputation is a conventional technique used to keep valuable data that have missing values. There

may be instances where dropping every row with a missing value removes too big a chunk from

your dataset, so instead we can impute the missing value with another value, usually the mean or

the median of that column.

CS2: Computer Science

Level 2

Example 1

let’s fill the missing values in height and weight of somalia_women DataFrame with their means.

The average or mean in each column will be used to replace any missing value found in that

column.

somalia_women.head()

somalia_women.isna().sum()

Here’s the mean value of somalia_women height:

somalia_women["height"].mean() # measured in kg

64.71544715447155

and here is the mean value of somalia_women’s weight

somalia_women["weight"].mean() # measured in lbs

64.13469387755102

We could also use the code below to achieve the same thing:

somalia_women.mean()

CS2: Computer Science

Level 2

The mean value of 64.71 shall be used to replace any NaN in height Series of somalia_women

DataFrame while the mean value of 64.13 will also be used to relace any NaN in the weight Series.

We can achieve this by using .fillna() attribute

somalia_women_imput = somalia_women.fillna(somalia_women.mean())

somalia_women_imput

somalia_women_imput.isna().sum()

CS2: Computer Science

Level 2

As you can see, all the missing values have been replaced by their mean values.

6.4.3 Checking for duplicates in a DataFrame

In this discussion, you will learn how to find duplicate rows in a Dataframe based on all or a list

of columns. For this we will use .duplicated() method on the DataFrame.

Syntax :

DataFrame.duplicated(subset = None, keep = “first”).

This results to Boolean Series denoting duplicate rows.

Parameters:

subset: This takes a column or list of column label. Its default value is None. After passing

columns, it will consider them only for duplicates.

keep: This controls how to consider duplicate value. It has only three distinct value and default is

first.

If first, this considers first value as unique and rest of the same values as duplicate.

If last, this considers last value as unique and rest of the same values as duplicate.

If False, this considers all of the same values as duplicates.

Let’s import course attendance DataFrame from our datasets directory to see how we can remove

duplicates from the DataFrame.

Load the Ethiopian’s flowers dataset (.csv) that was adapted from the well-known Iris dataset.

Remember the first thing is to import all the necessary libraries such as numpy, pandas, etc.

import numpy as np

import pandas as pd

course_attendance = pd.read_csv("datasets/course attendance.csv")

CS2: Computer Science

Level 2

It is a small dataset so we can easily print it out

course_attendance

Example 1

Select duplicate rows based on all columns.

Here, we do not pass any argument therefore it takes default values for both the arguments

i.e. subset = None and keep = “first”. Selecting duplicate rows except first occurrence based on

all columns.

The code is course_attendance[course_attendance.duplicated()]. Let’s break it one by one for

your understanding.

Step 1: Check for duplicate rows using .duplicated() method. This results to Boolean Series

(True/False) denoting duplicate rows.

CS2: Computer Science

Level 2

course_attendance.duplicated()

As you can see, we have some missing values in row 14, 16, and 17 respectively. Remember

Python index starts with 0. To check for the number of duplicates use:

course_attendance.duplicated().sum()

3

Step 2: Use the result of step 1 to select the duplicate rows in the DataFrame

i.e. DataFrame[step1].

course_attendance[course_attendance.duplicated()]

Example 2

Select duplicate rows based on all columns

If you want to consider all duplicates except the last one, then, pass keep = “last” as an argument.

CS2: Computer Science

Level 2

Example 3

Select duplicate rows based on some columns

If you want to select duplicate rows based only on some selected columns then pass the list of

column names in subset as an argument.

course_attendance[course_attendance.duplicated("Name")]

course_attendance[course_attendance.duplicated("Course taken")]

Example 4

Select duplicate rows based on some columns

Select duplicate rows based on more than one column names

CS2: Computer Science

Level 2

course_attendance[course_attendance.duplicated(["Name", "Country"])]

Class activity 9 (Peer to peer review activity)

6.5 Exploratory Data Analysis (EDA)

Exploratory data analysis (EDA) is an approach used by data scientists to analyze and investigate

data sets and summarize their main characteristics by using data visualization methods. In a simple

form, the main purpose of EDA is to help look at data and see what it can tell us before making

any assumptions. It can help identify obvious errors, as well as to understand patterns within the

data, detect outliers (extreme values), and find interesting relations among the variables. For more

information about Pandas Profiling Report check this source.

6.5.1 Pandas Profiling

pandas_profiling is a Python module that extends the Pandas DataFrame with df.profile_report()

for quick exploratory data analysis with just a few lines of code. In addition, it also generates

interactive reports in web format with all the information easily available in the data. In summary,

Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the

discussion

Import penguins.csv dataset as penguins and examine duplicate rows

in the DataFrame

Note: Penguins dataset is in the activity_datasets directory or folder.

https://github.com/pandas-profiling/pandas-profiling

CS2: Computer Science

Level 2

what pandas profiling does is save us all the work of visualizing and understanding the distribution

of each variable.

Pandas Profiling installation

Open up your Anaconda Prompt or Terminal and run

pip install pandas-profiling

Installing pandas-profiling

6.5.2 Importing Pandas Profiling

Like other libraries such as numpy or pandas, we also need to import pandas profiling after

installation.

import numpy as np

import pandas as pd

from pandas_profiling import ProfileReport

6.5.3 Using Pandas Profiling

Example 1

Load the Ethiopian’s flowers dataset(.csv) as ethiopian_flower DataFrame. The dataset is in the

datasets folder.

CS2: Computer Science

Level 2

ethiopian_flower = pd.read_csv("datasets/Ethiopian_flowers.csv")

We then use .profile_report() method on the DataFrame.

CS2: Computer Science

Level 2

ethiopian_flower.profile_report()

CS2: Computer Science

Level 2

Example 2

Load the money_transfer_transactions.csv data as money_transfer DataFrame. This data set is

about money transaction in Uganda, Somalia, Kenya, Ethiopia South Sudan, Tanzania, and

Rwanda. The dataset is in the datasets folder.

money_transfer = pd.read_csv("datasets/money_transfer_transactions.csv")

We then use .profile_report() method on the DataFrame.money_transfer.profile_report()

CS2: Computer Science

Level 2

CS2: Computer Science

Level 2

Class activity 10 (Peer to peer review activity)

6.0 Summarizing and Computing Descriptive Statistics

You can summarize your dataset with a set of common mathematical and statistical methods with

Pandas attribute. For example, let’s check the summary statistics in the somalia_women

DataFrame.

.describe() method

Using .describe() on an entire DataFrame we can get a summary of the distribution of continuous

variables:

somalia_women_dropna.describe()

Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the discussion

Import Somalia contraceptive method choice.csv as

somalia_contraceptive.

Description of the dataset:

The dataset is about the current contraceptive method choice (no use, long-term methods, or short-term methods)

of Somalia woman based on her demographic and socio-economic characteristics.

Your task:

Perform exploratory data analysis using Pandas Profiling report.

Note: Somalia contraceptive method choice dataset is in the activity_datasets directory or folder.

CS2: Computer Science

Level 2

Examples

Consider east_africa_dropna DataFrame in which we have removed all columns with any

missing values.

east_africa_dropna.describe()

.describe() can also be used on a categorical variable to get the count of rows, unique count of

categories, top category, and frequency of top category. For example, in registrations_df

DataFrame

registrations_df

CS2: Computer Science

Level 2

registrations_df["Gender"].describe()

Frequency distribution of Series

.value_counts() method

.value_counts() attribute can tell us the frequency distribution of all values in a column or Series.

To illustrate these, consider examples below:

Example 1

registrations_df["Gender"].value_counts()

CS2: Computer Science

Level 2

Example 2

Consider east_africa names DataFrame, what is the distribution of male and female in the Gender

column?

east_africa.head()

east_africa["Gender"].value_counts()

As you can see, there are 616 and 515 male and female names respectively.

.value_counts() also accepts some other arguments i.e. sort = True/False and normalize =

True/False. The Series is sorted by value in descending order with sort = True and relative

frequencies with normalize = True.

east_africa["Gender"].value_counts(sort = True, normalize = True)

CS2: Computer Science

Level 2

You can get the result in percentage by multiplying by 100

east_africa["Gender"].value_counts(sort = True, normalize = True) * 100

Class activity 11 (Tutor guided question)

Solution

We need to import the penguins.dta dataset. Remember this is a STATA file (.dta)

First, check your current working directory by using pwd. Make sure penguins.dta is in your

working directory.

pwd

C:\\Users\\OGUNDEPO EZEKIEL .A\\Desktop\\Data and Decision\\Introduction to data science

1\\Scripts

But penguins.dta is in the datasets folder so I will use relative path datasets/penguins.dta.

Now let's import our penguins.dta dataset with Pandas.

Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the discussion

Find and display the name of the most common species in the penguins.dta

dataset.

CS2: Computer Science

Level 2

import pandas as pd

penguins = pd.read_stata("datasets/penguins.dta")

penguins.head()

Let’s not forget the question!

Find and display the name of the most common species in the penguins’ dataset.

Select the species Series from the penguins DataFrame and apply value_counts() or .describe()

on it

penguins["species"].value_counts()

penguins["species"].describe()

Adelie is the most common species in the penguins’ dataset

6.1 Data Aggregation and Group Operations

6.1.1 Grouping one variable

By “group by” we are referring to a process involving one or more of the following steps:

CS2: Computer Science

Level 2

• Splitting the data into groups based on some criteria

• Applying a function to each group independently

• Combining the results into a data structure

Illustration of a group aggregation

Example 1

Consider penguins DataFrame, what is the mean bill_length(mm) of each of the species.

penguins.head()

We call the .groupby() on the DataFrame and with a column (a Series) to groupby with. We then

apply some operation to each of the groups. For example, to compute group means we can call the

groupby’s mean method:

CS2: Computer Science

Level 2

penguins.groupby("species").mean()

We can now see the mean of each continuous variable for each of the species.

The mean bill_length of Adelie, Chinstrap, and Gentoo are 38.800000, 48.833824, and 47.568067

respectively.

We can actually use:

penguins.groupby(["species"])["bill_length_mm"].mean()

To get the same results with only mean of the bill_length_mm for each specie

6.1.2 More than one grouping

Groupby also allows for more than 1 grouping. For example, what is the sum of the bill_depth

(mm) for the combination of species and sex of Penguins?

penguins.groupby(["species", "sex"])["bill_length_mm"].sum()

CS2: Computer Science

Level 2

6.1.3 Data Aggregation

We can use more than one aggregation such as mean, count, min, and sum for a groupby object by

passing it to the .agg() attribute. For example, we can pass a list of aggregation functions to agg to

evaluate independently on the data groups.

Example 1

Find the sum, mean, and standard deviation of bill_lenght for each of the species in the

Penguins dataset.

penguins.groupby(["species"])["bill_length_mm"].agg(["sum", "mean", "std"])

CS2: Computer Science

Level 2

Example 2

Using Penguins dataset, find minimum and maximum of body_mass for the combination of

species and sex of Penguins?

penguins.groupby(["species", "sex"])["body_mass_g"].agg(["min", "max"])

For example, we can interpret body mass for Adelie specie as:

The minimum and maximum body mass for female Adelie Penguins are 2850 and 3900

respectively while that of male Adelie are 3325 and 4775 respectively. It can be seen that male

Adelie has more body mass that female Adelie.

6.1.4 Cross-Tabulations (Crosstab)

Contingency tables also called crosstabs or two-way tables are used in statistics to present

categorical data in terms of frequency counts. In other words, it is a special type of frequency

distribution table, where two variables are shown simultaneously. More precisely, an r×c

contingency table shows the observed frequency of two variables, the observed frequencies of

CS2: Computer Science

Level 2

which are arranged into r rows and c columns. The intersection of a row and a column of a

contingency table is called a cell.

How to do crosstabulation?

We use pd.crosstab() attribute to do crosstabulation and pd.crosstab() contains the following:

pd.crosstab(index, columns, values=None, rownames=None, colnames=None,

aggfunc=None, margins=False, margins_name=‘All’, dropna=True, normalize=False)

Some major parameters are:

 index: Series- values to group by in the rows

 column: Series - values to group by in the columns

 margins bool (True/False), default False: Add row/column margins (subtotals)

Additional resources

For more information about pd.crosstab(), check this link.

Example 1

pd.crosstab(index = penguins["species"], columns = penguins["sex"], margins = True)

As you can see, there are 58 female and 61 male Gentoo Penguins

https://pandas.pydata.org/docs/reference/api/pandas.crosstab.html

CS2: Computer Science

Level 2

Example 2

Create a crosstabulation table using index for species, Island and sex for columns

pd.crosstab(index = penguins["species"], columns = [penguins["island"], penguins["sex"]], margins=True

)

6.6 Combining and Merging Datasets

It’s rare that a data analysis involves only a single table of data. Typically, you have many tables

of data, and you must combine them to answer the questions that you’re interested in. Collectively,

multiple tables of data are called relational data because it is the relations, not just the individual

datasets, that are important.

Relations are always defined between a pair of tables. All other relations are built up from this

simple idea: the relations of three or more tables are always a property of the relations between

each pair. Sometimes both elements of a pair can be the same table! This is needed if, for example,

you have a table of people, and each person has a reference to their parents.

For example, consider the two DataFrames below:

COVID19_info_dic = {

 "Country": ["Burundi", "Ethiopia", "Kenya", "Rwanda", "Somalia", "Tanzania", "Ugan

da", "Sudan"],
 "Confirmed cases": [673, 107109, 79322, 5750, 4445, 509, 18406, 16431],
 "Death cases": [1, 1664, 1417, 47, 113, 21, 186, 1202],
 "Recovered cases": [575, 66574, 52974, 5241, 3412, 183, 8764, 9854],
 "Population" : [12029114, 116082175, 54237961, 13078334, 16066789, 60399786, 463

04101, 44252054]
}

CS2: Computer Science

Level 2

COVID19_info_df = pd.DataFrame(COVID19data, columns= ["Country", "Total Cases", "Total

Deaths", "Total Recovered", "Population"])

COVID19_info_df

epidemiology_info_dic = {"Country": ["Burundi", "Ethiopia", "Kenya", "Rwanda", "Somalia", "

Tanzania", "Uganda", "Sudan"],

"Fatality rate" : [0.001, 0.016, 0.018, 0.008, 0.025, 0.041, 0.010, 0.073],

"Discharge rate" : [0.854, 0.622, 0.668, 0.911, 0.768, 0.360, 0.476, 0.600]

}

epidemiology_info_df = pd.DataFrame(COVID19data_2, columns= ["Country", "Fatality rate", "

Discharge rate"])

epidemiology_info_df

CS2: Computer Science

Level 2

6.6.1 Keys

The variables used to connect each pair of tables are called keys. A key is a variable (or set of

variables) that uniquely identifies an observation. In simple cases, a single variable is sufficient to

identify an observation. For example, each COVID-19 data is uniquely identified by their country

name. In other cases, multiple variables may be needed.

There are two types of keys:

A primary key uniquely identifies an observation in its own table. For example,

COVID19_info_df[“Country”] is a primary key because it uniquely identifies each COVID-19

cases in the COVID-19 DataFame.

A foreign key uniquely identifies an observation in another table. For example,

epidemiology_info_df["Country] is a foreign key because it appears in the COVID-19 DataFame

where it matches each country to a unique COVID-19 cases.

Data contained in pandas objects can be combined together in a number of ways:

1. pd.merge connects rows in DataFrames based on one or more keys.

2. pd.concat concatenates or “stacks” together objects along an axis.

6.7 Joining/merging DataFrames with pd.merge() function

pd.merge() combine datasets by linking rows using one or more keys. There are 4 types of joining.

Type of merge to be performed includes:

 left: use only keys from the left DataFrame

 right: use only keys from the right DataFrame

 outer: use union of keys from both DataFrames

 inner: use intersection of keys from both DataFrames

CS2: Computer Science

Level 2

pd.merge(left, right, how=‘inner’, on=None, left_on=None, right_on=None, left_index=False,

right_index=False, sort=True, suffixes=(’_x’, ’_y’), copy=True, indicator=False, validate=None)

Some of the key parameters are:

left: The first DataFrame

right: The second DataFrame

on: Column to join on.

how: One of ‘left’, ‘right’, ‘outer’, ‘inner’. Defaults to inner.

The left left_on and right_on are useful when primary and foreign keys have different names

(column names)

left_on: Columns from the left DataFrame to use as keys. Can either be column names, index level

names, or arrays with length equal to the length of the DataFrame or Series.

right_on: Columns or index levels from the right DataFrame or Series to use as keys. Can either

be column names, index level names, or arrays with length equal to the length of the DataFrame

or Series.

Example 1

Consider COVID19_info_df and epidemiology_info_df DataFrames.

COVID19_info_df.head()

epidemiology_info_df.head()

CS2: Computer Science

Level 2

We can perform left merging or joining by using:

country_info = pd.merge(COVID19_info_df, epidemiology_info_df, on = "Country", how = "left")

country_info

As you can see, the two datasets have been merge together.

Example 2

Consider band_members and band_instruments DataFrames below:

band_members = pd.DataFrame({

"name" : ["Mick", "John", "Paul"],

 "band": ["Stones", "Beatles", "Beatles"]

})

band_members

CS2: Computer Science

Level 2

band_instruments = pd.DataFrame(

{"name" :["John", "Paul", "Keith"],

"plays": ["guitar", "bass", "guitar"]

})
band_instruments

Inner join

Use inner join to combine band_members and band_instruments DataFrames

inner_join = pd.merge(band_members, band_instruments, on = "name", how = "inner")

inner_join

inner join uses intersection of keys from both DataFrames and includes all rows where there is an

intersection

Left join

Use left join to combine band_members and band_instruments DataFrames

left_join = pd.merge(band_members, band_instruments, on = "name", how = "left")

left_join

CS2: Computer Science

Level 2

left join uses only keys from the left DataFrame and includes all its rows in the merging.

Right join

Use right join to combine band_members and band_instruments DataFrames

right_join = pd.merge(band_members, band_instruments, on = "name", how = "right")

right_join

right join uses only keys from the right DataFrame and includes all its rows for the merging.

Outer join

Use outer join to combine band_members and band_instruments DataFrames

outer_join = pd.merge(band_members, band_instruments, on = "name", how = "outer")

outer_join

outer join also known as full join uses union of keys from both DataFrames and includes all rows

in the two DataFrames for the merging.

CS2: Computer Science

Level 2

Class activity 12 (Group work)

6.7.1 Concatenating DataFrames with pd.concat() function

To simply concatenate or combine the DataFrames along the row you can use the pd.concat()

function in pandas. You will have to pass the names of the DataFrames in a list as the argument to

the pd.concat() function.

DataFrames to be concatenated/combined must have the same columns

names.

Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the discussion

COVID-19 information for the West Africa countries are stored in the

activity_datasets directory/folder:

west_africa_COVID_cases.csv: This consists COVID-19 cases for each

West Africa country

west_africa_COVID_test.csv: COVID-19 testing information for each West Africa country

Use Pandas to:

1. import west_africa_COVID_cases.csv as west_africa_covid

2. import west_africa_COVID_test.csv as west_africa_test

3. use pd.merge() to merge/join the two DataFrames using left join

CS2: Computer Science

Level 2

Example 1

Let’s import east_africa.csv and central_africa.csv COVID-19 datasets which can be found in

the datasets directory and combine them using pd.concat().

We shall import the dataset using a relative path datasets/…

east_africa_covid = pd.read_csv("datasets/east_africa.csv")

east_africa_covid.head()

centra_africa_covid = pd.read_csv("dataset/central_africa.csv")

centra_africa_covid.head()

CS2: Computer Science

Level 2

We can combine the two DataFrames by passing the names of the DataFrames in a list as the

argument to the pd.concat() function.

east_and_centra_africa_covid19 = pd.concat([east_africa_covid, centra_africa_covid])

east_and_centra_africa_covid19

You will notice that the two DataFrames east_africa_covid and centra_africa_covid are now

concatenated or combined into a single DataFrame called east_and_centra_africa_covid19 along

the row. However, the row labels seem to be wrong! If you want the row labels to adjust

CS2: Computer Science

Level 2

automatically according to the join, you will have to set the argument ignore_index as True while

calling the pd.concat() function:

east_and_centra_africa_covid19 = pd.concat([east_africa_covid, centra_africa_covid],

ignore_index = True)

east_and_centra_africa_covid19

Example 2

Let’s import north_africa.csv and concatenate it to east_and_centra_africa_covid19 DataFrame

using pd.concat().

north_africa_covid = pd.read_csv("datasets/north_africa.csv")

north_africa_covid.head()

north_east_centra = pd.concat([north_africa_covid, east_and_centra_africa_covid19],

CS2: Computer Science

Level 2

ignore_index = True)

north_east_centra.head()

Additional resources

For more resources on merging and concatenating data, check the following resources:

 https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

 https://bit.ly/datacamp-joining-dataframes-pandas

Class activity 13 (Peer to peer review activity)

Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the discussion

import west_africa.csv and southern_africa.csv datasets in the

activitiesdatasets directory and combined them using pd.concat() and

represent the resulting DataFrame as west_south.

1. What is the number of columns and rows in west_south

DataFrame?

2. Examine the number of missing values in each of the columns if there is any.

3. How many countries are in the west_south DataFrame?

4. Use west_south.describe() to get the number of total COVID-19 cases in the DataFrame

https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html
https://bit.ly/datacamp-joining-dataframes-pandas

CS2: Computer Science

Level 2

Summary of Study Unit 6

In this study unit, you have learnt that:

1. Pandas is a popular Python package for data science

2. Both Series and DataFrame can be used to create or generate a dataset.

3. With Pandas you can import different file format such as .xlsx, .csv, etc.

4. You can get information about your dataset using .info(), .shape, .head(), .tail() or .columns

attributes

5. Pandas Profiling can be used to generate a quick exploratory data analysis of your dataset.

Additional resources

For more additional resources on Pandas, check the following resources:

 http://bit.ly/data-school-25-pandas-tricks

 https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html

 https://bit.ly/python-pandas-tutorial-complete-introduction-for-beginners

http://bit.ly/data-school-25-pandas-tricks
https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html
https://bit.ly/python-pandas-tutorial-complete-introduction-for-beginners

