
CS2: Computer Science Level 2

Study Unit

5

Introduction to Numpy

array

Introduction to NumPy

Array Outline

 Introduction to Numpy

 Installation instruction

guide

 How to import Numpy

library

 Python Lists and NumPy

Arrays

 Array Slicing

 Numpy Attributes

 Other ways to create

arrays

 Multi-dimensional array

 Systems of Linear

Equations

Study Unit Duration

This Study Unit requires a

minimum of 3 hours’ formal

study time. You may spend an

additional 2-3 hours on

revision.

Preamble

NumPy is a Python package/library that stands for ‘Numerical Python’.

It is the core library for scientific computing, which contains a powerful

n-dimensional array object. It is also a linear algebra for python and

almost all of the libraries in the Python ecosystem rely on it as one of

their main building blocks.

Learning Outcomes of Study Unit 5

Upon completion of this study unit, you should be able to:

5.1 Create one dimensional NumPy Arrays from Python list, access

values stored within them and do some mathematical operations

5.2 Create n-dimensional Arrays and carry out different mathematical

operations on them

5.3 Work with NumPy Array use cases

Terminologies, Acronyms and their Meaning

CS2: Computer Science Level 2

AI Artificial Intelligence

ML Machine Learning

RL Reinforcement Learning

DL Deep learning

EDA Exploratory Data Analysis

NaN Not a Number

np NumPy

pd Pandas

os Operating system

AI Artificial Intelligence

TF TensorFlow

NULL Missing value

5.1 Installation Instruction guide

If you installed the Anaconda distribution of Python - it includes Python, NumPy, and other

commonly used packages for scientific computing and data science. Therefore, no further

installation steps are necessary. We recommend you use the Anaconda distribution of Python as

you begin your data science journey.

If you use a version of Python from python.org or a version of Python that came with your

operating system, the Anaconda Prompt and conda or pip can be used to install NumPy.

5.1.1 Install NumPy with the Anaconda Prompt

To install NumPy, open the Anaconda Prompt and type:

conda install numpy

Type y for yes when prompted.

5.1.2 Install NumPy with pip

To install NumPy with pip, bring up a terminal window and type:

pip install numpy

This command installs NumPy in the current working Python environment.

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual

CS2: Computer Science Level 2

5.1.3 Importing the NumPy module

There are several ways to import NumPy. The standard approach is to use a simple import

statement:

import numpy

However, for large amounts of calls to NumPy functions, it can become tedious to write numpy.X

over and over again. Instead, it is common to import under the briefer name np:

Numpy has many built-in functions and to use each of the functions, we will need to call them

from numpy. For example numpy.array, numpy.mean, numpy.log10, etc. Here, we see that we

are calling numpy.something over and over again. Instead, it is common in Python to use alias.

For example:

import numpy as np

5.1.4 Python Lists and NumPy Arrays

This section introduces NumPy arrays then explains the difference between Python lists and

NumPy arrays. NumPy is used to construct homogeneous arrays and perform mathematical

operations on arrays. A NumPy array is different from a Python list. The data types stored in a

Python list can all be different.

python_list = ["Ethiopia", 5, 17.9, True]

type(python_list)

<class ‘list’>

The Python list above contains four different data types:

 “Ethiopia” is a string

 5 is an integer

 17.9 is a float

 True is a boolean.

CS2: Computer Science Level 2

5.2 Working with NumPy Array

NumPy arrays are a bit like Python lists, but still very much different at the same time. The simplest

way to create an array in Numpy is to use Python List.

myPythonList = [1, 4, 7, 2, 12, 17]

We can convert python list to a numpy array by using the object np.array.

numpy_array_from_list = np.array(myPythonList)

type(numpy_array_from_list)

<class ‘numpy.ndarray’>

To display the output:

numpy_array_from_list

array([1, 4, 7, 2, 12, 17])

In practice, there is no need to declare a Python List. The operation can be combined.

new_array = np.array([1, 9, 8, 3, 12])
new_array

array([1, 9, 8, 3, 12])

5.2.1 Mathematical operations on one dimensional array

You can perform mathematical operations like additions, subtraction, division, and multiplication

on an array. The syntax is the array name followed by the operation (+, -, *, /).

Example 1

a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

Addition

a + 2

array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

Subtraction

a - 3

CS2: Computer Science Level 2

array([-2, -1, 0, 1, 2, 3, 4, 5, 6, 7])

Multiplication

a * 2

array([2, 4, 6, 8, 10, 12, 14, 16, 18, 20])

Division

a/2

array([0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5.])

Exponentiation

a**3

array([1, 8, 27, 64, 125, 216, 343, 512, 729, 1000], dtype=int32)

When standard mathematical operations are used with arrays, they are applied on an element-by-

element basis. This means that the arrays should be the same size during addition, subtraction, etc.

Example 2

a = np.array([5, 2, 7, 4, 12])

b = np.array([3, 2, 4, 1, 6])

print(a + b)

[8 4 11 5 18]

print(a - b)

[2 0 3 3 6]

print(a * b)

[15 4 28 4 72]

print(b / a)

[0.6 1. 0.57142857 0.25 0.5]

print(a % b) # Remainder when you divide each of the elements in a by b

[2 0 3 0 0]

b**a

CS2: Computer Science Level 2

array([243, 4, 16384, 1, -2118184960], dtype=int32)

np.sqrt(a) # square root of each of the elements in a

array([2.23606798, 1.41421356, 2.64575131, 2. , 3.46410162])

Class activity 1 (Peer to peer review activity)

5.2.2 One-dimensional Array Indexing

Array elements are accessed, sliced, and manipulated just like lists.

a = np.array([1, 2, -1, 4, -5, 6, 7, 0, 9, 10])

print(a)

[1 2 -1 4 -5 6 7 0 9 10]

Remember index in Python starts at 0 and ends at n-1.

The index (or location) of each value in the array is shown below:

The value 1 has an index of 0. We could also say 1 is in location 0 of the array. The value 4 has an

index of 3 and the value 8 has an index of 9.

 Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the

discussion

1. Convert the following Python lists to Numpy arrays:

 even_list = [2, 4, 6, 8, 10]

 odd_list = [1, 3, 5, 7, 9]

2 Add the resulting arrays together and name it even_odd_array

3. Print the result of even_odd_array

CS2: Computer Science Level 2

Example 1

Accessing the first element in array a

a[0]

1

Example 2

Accessing the third element in array a

a[3]

4

Example 3:

Accessing the first element in array a and replacing the result with 5

a[2] = 5
a

array([1, 2, 5, 4, -5, 6, 7, 0, 9, 10])

Class activity 2 (Peer to peer review activity)

5.2.3 Array slicing

Values stored within an array can be accessed simultaneously with array slicing. To pull out a

section or slice of an array, the colon operator (:) is used when calling the index. The general form

is:

array [start : stop]

Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the

discussion

Consider:

age_array = np.array([19, 17, 15, 13, 20, 11, 18, 10, 17])

How will you access the 3𝑟𝑑 element in the given array?

CS2: Computer Science Level 2

The index of the slice is specified in [start : stop]. Remember Python counting starts at 0 and ends

at 𝑛 − 1. The index [0 : 2] pulls the first two values out of an array. The index [1 : 3] pulls the

second and third values out of an array.

Example 1
a = np.array([2, 4, 6, 5, 8, 9])

print(a)

[2 4 6 5 8 9]

b = a[0:2]

print(b)

[2 4]

Example 2

x = np.array([5, 8, 9, 2, 4, 6, 5])

print(x)

[5 8 9 2 4 6 5]

print(x[1:3])

[8 9]

On either side of the colon, a blank stand for “default”.

• [:2] corresponds to [start=default : stop = 2]

• [1:] corresponds to [start=1 : stop = default]

Therefore, the slicing operation [:2] pulls out the first and second values in an array. The slicing

operation [1:] pull out the second through the last values in an array. The examples below illustrate

the default stop value is the last value in the array.

Example 3

a = np.array([2, 4, 6, 8, 10, 0, 1, 5])
print(a)

[2 4 6 8 10 0 1 5]

CS2: Computer Science Level 2

b = a[1:]
print(b)

[4 6 8 10 0 1 5]

Example 4

x = np.array([0, 5, 6, 1, 0, 8, 1, 5, 9])
print(x)

[0 5 6 1 0 8 1 5 9]

y = x[2:]
print(y)

[6 1 0 8 1 5 9]

The next examples show the default start value is the first value in the array.

a = np.array([2, 4, 6, 8, 1, 3, 6])
print(a)

[2 4 6 8 1 3 6]

b = a[:3]
print(b)

[2 4 6]

The following indexing operations output the same array.

a = np.array([2, 1, 7, 4, 6, 8, 3])

b = a[0:7] # [start=0:stop= 6]

print(b)

[2 1 7 4 6 8 3]

c = a[:7] # [start=0:stop= 6]

print(c)

[2 1 7 4 6 8 3]

d = a[0:] # [start=0:stop= 6]

print(d)

[2 1 7 4 6 8 3]

CS2: Computer Science Level 2

e = a[:] # [start=0:stop= 6]

print(e)

[2 1 7 4 6 8 3]

Class activity 3 (Pilot question 1)

Pilot answer 1

a[:3]

5.2.4 Numpy Attributes

Array attributes reflect information that is intrinsic to the array itself. Generally, accessing an array

through its attributes allows you to get the intrinsic properties of the array. Some commonly used

attributes are:

• shape: indicates the dimension of an array

• size: returns the total number of elements in the array

• dtype: returns the type of elements in the array, i.e., int64, character

You can check the shape of the array with the object shape preceded by the name of the array. In

the same way, you can check the type with dtypes.

Example 1

even_array = np.array([2, 4, 6, 8, 10, 12, 14, 16])

even_array

array([2, 4, 6, 8, 10, 12, 14, 16])

Consider:

a = np.array([2, 1, 0, 4, 7, 4, 6, 8, 3])

if you want to pull out the first three values in a, that is, to look

like:

array([2, 1, 0])

what will you do?

CS2: Computer Science Level 2

dimension of the array

print(even_array.shape)

(8,)

total element in the array

print(even_array.size)

8

datatype in the array

print(even_array.dtype)

int32

Example 2
some_array = np.array([12, 62, 65, 7, 21, 60, 10, 87, 14, 43, 51, 10, 38, 95, 26, 11, 46, 47, 34, 68, 58, 77,

13, 10, 45])

some_array

array([12, 62, 65, 7, 21, 60, 10, 87, 14, 43, 51, 10, 38, 95, 26, 11, 46, 47, 34, 68, 58, 77, 13, 10, 45])

some_array.shape

(25,)

some_array.size

25

5.2.5 Other ways to create arrays

arange

The arange function is similar to the range function but returns an array:

import numpy as np

np.arange(5)

array([0, 1, 2, 3, 4])

CS2: Computer Science Level 2

np.arange(10)

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

np.arange(1, 10, 2)

array([1, 3, 5, 7, 9])

linspace

Return evenly spaced numbers over a specified interval.

np.linspace(0,10,3)

array([0., 5., 10.])

np.linspace(0, 50, 10)

array([0. , 5.55555556, 11.11111111, 16.66666667, 22.22222222, 27.77777778, 33.33333333,

38.88888889, 44.44444444, 50.])

random

Numpy also has lots of ways to create random number arrays:

rand

numpy.random.rand() creates an array of the given shape and populate it with random samples

from a uniform distribution over [0, 1).

np.random.rand(3)

array([0.51577564, 0.61414998, 0.59926459])

np.random.rand(5, 5)

array([[0.21670278, 0.33876903, 0.63692906, 0.8675732 , 0.82739833], [0.574706 ,

0.17572825, 0.7304413 , 0.80792132, 0.39244966], [0.96046517, 0.40915708, 0.17417772,

0.72472084, 0.48388903], [0.42768233, 0.04920145, 0.34787038, 0.07427598, 0.58396513],

[0.82287729, 0.86726255, 0.32318855, 0.1827099 , 0.22199998]])

randn

numpy.random.randn() returns a sample (or samples) from the “standard normal” distribution.

Unlike rand which is uniform:

CS2: Computer Science Level 2

np.random.randn(2)

array([-0.39931173, -1.42514668])

np.random.randn(50)

array([5.90281962e-01, -2.68820513e+00, 3.55859385e-01, -4.70134624e-01, -6.96299446e-03,

2.26441566e+00, -3.01570019e+00, 5.00142537e-02, 1.57159614e+00, -1.45502043e+00, -

1.12834541e+00, -8.09600626e-01, -6.22768305e-01, 4.34774127e-01, -1.03159172e+00,

1.25435863e+00, 6.83860355e-01, 2.17670426e-01, 4.31856702e-01, -2.50393189e-01, -

3.83857367e-01, 3.36582061e-01, 6.93761785e-01, 3.41140978e-01, 2.19553456e+00, -

2.46751647e+00, -1.34352538e+00, -8.86765471e-01, 1.57982728e+00, 4.91933876e-01,

1.39446883e+00, -2.15174902e+00, -2.20332869e-01, -7.73649981e-01, 7.34320780e-01, -

2.51001871e-01, -1.24301411e+00, -6.18636925e-02, -2.30200291e-01, 5.97251915e-01, -

1.64933598e+00, -6.01474952e-01, -1.20038663e+00, 7.70133986e-01, 5.10136017e-01, -

5.76822347e-01, 9.69298588e-01, 3.99131931e-01, 3.32902425e-01, -1.80469005e-03])

np.random.randn(5, 5)

array([[0.2331869 , -1.09080222, 1.58275534, 0.27481294, 0.34762717], [0.58272839, -

0.73934574, -0.32446319, -1.20334318, 0.69339338], [-1.29556187, -0.55346148, -0.01897053,

0.66235769, -0.29137372], [-0.01246607, -1.17154902, 0.00871826, 1.16632516, 1.75843969],

[1.14889646, 0.44057927, 0.4242706 , 0.22584696, 0.61277228]])

randint

Return random integers from low (inclusive) to high (exclusive).

np.random.randint(1, 100)

33

np.random.randint(1, 100, 10)

array([90, 12, 73, 58, 20, 17, 89, 39, 6, 69])

CS2: Computer Science Level 2

Class activity 4 (Peer to peer review activity)

5.3.6 Multi-dimensional array

Arrays can be multidimensional. Unlike lists, different axes are accessed using commas inside

bracket notation. A simple 2-D array is defined by a list of lists. Here is an example with a two-

dimensional array (e.g. a matrix).

Example 1

𝐴 = (
1 2 3
4 5 6
7 8 9

)

A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

print(A)

[[1 2 3]

[4 5 6]

[7 8 9]]

Dimension of the array:

print(A.shape)

(3, 3)

This returns a tuple.

Total elements in the array:

print(A.size)

Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the

discussion

Create 100 random integers from 20 to 90 using

np.random.randint() function.

CS2: Computer Science Level 2

9

Example 2

𝑎𝑛𝑜𝑡ℎ𝑒𝑟_𝑎𝑟𝑟𝑎𝑦 = (
5 6 7
4 2 1
3 7 1

)

another_array = np.array([[5, 6, 7], [4, 2, 1], [3, 7, 1]])

print(another_array)

[[5 6 7]

[4 2 1]

[3 7 1]]

print(another_array.shape)

(3, 3)

print(another_array.size)

9

Class activity 4 (Peer to peer review activity)

 Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the

discussion

Consider:

𝑥 = (
0 6 3
5 2 7
3 4 1

)

1. Develop a two-dimensional array for x using NumPy

2. What is the shape of x?

3. What is the number of elements in x?

CS2: Computer Science Level 2

Two-Dimensional (2-D) Array Indexing

Values in a 2-D array can be accessed using the general notation below:

value = array name [row, col]

Where value is the value pulled out of the 2-D array and [row, col] specifies the row and column

index of the value. Remember Python counting starts at 0, so the first row is row zero and the first

column is column zero. We can access the value 2 in the array above by calling the row and column

index [0, 1]. This corresponds to the 1st row (remember row 0 is the first row) and the 2nd column

(column 0 is the first column).

𝐴 =

𝐶0 𝐶1 𝐶2
1 2 3 𝑅0
4 5 6 𝑅1
7 8 9 𝑅2

Example 1

A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

print(A)

[[1 2 3]

 [4 5 6]

[7 8 9]]

A[0, 1] # value 2 is in row 0 and column 1

2

A[1, 0] # value 4 is is row 1 and column 0

4

Example 2

a = np.array([[2,3,4],[6,7,8]])

print(a)

[[2 3 4]

[6 7 8]]

CS2: Computer Science Level 2

a[1, 2]

8

a[1, 2] = 20

print(a)

[[2 3 4]

[6 7 20]]

Other array indexing

2D NumPy arrays can also be sliced with the general form:

array[row = start_row : end_row, col = start_col : end_col]

The code section below creates a two row by four column array and indexes out the first two

rows and the first three columns.

a = np.array([[2, 4, 6, 8], [0, 5, 4, 1]])

print(a)

[[2 4 6 8]

[0 5 4 1]]

a.shape

(2, 4)

b = a[0:2, 0:3]
print(b)

[[2 4 6]

[0 5 4]]

The code section below slices out the first two rows and all columns from array a.

b = a[:2, :] #[first two rows, all columns]

print(b)

[[2 4 6 8]

 [0 5 4 1]]

CS2: Computer Science Level 2

Again, a blank represents defaults the first index or the last index. The colon operator all by itself

also represents “all” (default start: default stop).

b = a[:, :] #[all rows, all columns]

print(b)

[[2 4 6 8]

[0 5 4 1]]

2D Array mathematics

When standard mathematical operations are used with arrays, they are applied on an element by

element basis. This means that the arrays should be the same size during addition, subtraction,

etc.

Examples

a = np.array([[3, 8], [4, 6]])

print(a)

[[3 8]

[4 6]]

b = np.array([[4, 0], [1, -9]])

print(b)

[[4 0]

[1 -9]]

Addition

a + b

array([[7, 8],

 [5, -3]])

Subtraction

a - b

array([[-1, 8],

 [3, 15]])

CS2: Computer Science Level 2

Multiply by a Constant

a*2

array([[6, 16],

 [8, 12]])

Multiplying by Another Matrix

Multiplication of two matrices is possible only when number of columns in first matrix equals

number of rows in second matrix. Multiplication by another matrix uses a dot product, np.dot()

or with @ operator:

Example

np.dot(a, b)

array([[20, -72],

 [22, -54]])

a @ b

array([[20, -72],

 [22, -54]])

Class activity 6 (Peer to peer review activity)

 Peer to Peer Interaction

 Visit the LMS, locate forum activity and

participate in the discussion

Consider the following NumPy arrays:

a = np.array([[3, 1, 8], [4,2, 6], [3, 7, 4]])

b = np.array([[4, 0, 6], [1, -9, 2], [1, 2, 3]])

Find the value of:

1. a - b

2. a + b

3. a × b
4. a[0 : 1, 1 : 2]

CS2: Computer Science Level 2

5.3 NumPy use cases: Systems of Linear Equations

Our knowledge in NumPy array can be used to solve system of linear equations. Remember in

your junior high school, you were taught how to solve simultaneous equation. The terms

simultaneous equations or systems of linear equations refer to conditions where two or more

unknown variables are related to each other through an equal number of equations.

A system of linear equations is shown below:

2𝑥 + 3𝑦 = 8

𝑥 − 𝑦 = −1

We have two unknowns variables, x and y and two equations i.e. 2𝑥 + 3𝑦 = 8 and 𝑥 − 𝑦 = −1 .

Using numpy.linalg.solve()

NumPy’s np.linalg.solve() function can be used to solve this system of equations for the variables

x and y.

Steps to follow:

The steps to solve the system of linear equations with np.linalg.solve() are below:

1. Create NumPy array A as a 2 by 2 array of the coefficients in x and y

2. Create a NumPy array b as the right-hand side of the equations

3. Solve for the values of x and y using np.linalg.solve(A, b).

The resulting array has two entries. One entry for each variable.

Example 1

Solve simultaneous equation below:

2𝑥 + 3𝑦 = 8

𝑥 − 𝑦 = −1

Solution

We want to solve for the unknown x and y.

CS2: Computer Science Level 2

import numpy as np

A = np.array([[2, 3], [1, -1]])

b = np.array([[8], [-1]])

x = np.linalg.solve(A, b)

x

array([[1.],

 [2.]])

x = x[0]

y = x[1]

Therefore, 𝑥 = 1 and 𝑦 = 2.

Example 2

Solve the system of linear equation:

2𝑥 − 𝑦 = 3

𝑥 − 3𝑦 = −2

Solution

We want to solve for the unknown x and y.

import numpy as np

A = np.array([[2, -1], [1, -3]])

b = np.array([[3], [-2]])

x = np.linalg.solve(A, b)

x

array([[2.2],

 [1.4]])

x = x[0]

y = x[1]

Therefore, 𝑥 = 2.2 and 𝑦 = 1.4.

CS2: Computer Science Level 2

Class activity 7 (Peer to peer review activity)

 Peer to Peer Interaction

 Visit the LMS, locate forum activity and

participate in the discussion

The following simultaneous/system of equation:

3x + 4y = 24

4x + 3y = 22

has been broken down to NumPy array for you:

A = np.array([[3, 4], [4, 3]])

b = np.array([[24], [22]])

Complete the following code to solve for x and y:

np.linalg(_ , _)

CS2: Computer Science Level 2

Summary of Study Unit 5

In this study unit, you have learnt that:

1. NumPy is a Python package/library that stands for Numerical Python.

2. Python Lists are different from NumPy Arrays

3. You can perform mathematical operations on n dimensional arrays

4. .shape, .size, and .dtype are the most commonly used attributes in NumPy Arrays

