
CS2: Computer Science Level 2

Study

Unit 3

Flow Control, Loops and

Functions in Python

Flow control, functions

and libraries in Python

Outline

 The if and else statement

 for loop and while loop

 continue and break

statements

 Python functions

 Python modules and

packages

Study Unit Duration

This Study Unit requires a

minimum of 3 hours’ formal

study time.

You may spend an additional

2-3 hours on revision.

Preamble

In the eyes of most philosophers of programming, the one thing that

separates programming from the early days’ automation - such as the

Jaquard loom - is its ability to make decisions as to what to do next. In the

programming world, that is known as flow control - control of the "flow"

of executed code.

In this study unit, you will learn conditions (branching) statements in

python. Conditions (branching) are known as control structures and they

determine whether a block of code will run or not. You will also learn

Python loops, functions and how to import different packages in Python.

Learning Outcomes of Study Unit 3

Upon completion of this study unit, you should be able to:

3.1 Employ control statement to make decisions in Python

3.2 Create functions to solve problems with Python

3.3 Import different packages in Python to do some tasks

 CS2: Computer Science Level 2
 Programming in Python

Terminologies, Acronyms and their Meaning

.ipynb Jupyter notebook or Jupyter

lab extension

.py Python extension

IDE Integrated Development

environment (IDE)

R R programming language

EDA Exploratory Data Analysis

NaN Not a Number

np NumPy

pd Pandas

os Operating system

AI Artificial Intelligence

int Integer data type

str String data type

bool Boolean data type

 CS2: Computer Science Level 2
 Programming in Python

3.1 Conditional Statements in Python

Majority of the time when programming, we would need to control the flow of our logic. Our

program will want to perform an action in only certain cases, we can use the if, elif, and else

statements to control for these cases. Let’s work through some examples:

3.1.1 The if and else statement

The format for an if statement is

if expression:

 Statement 1

else:

 Statement 2

The if statement checks whether the expression evaluates to True, and if so, the statement 1 is

executed, otherwise the statement 2 is executed. Note the indentation before the statement 1 and 2

and the colon (:) in the if expression and else.

All the comparison operators discussed in unit 2 will be useful here.

 CS2: Computer Science Level 2
 Programming in Python

Example 1

x = 10

y = 22

if (x < y):

 print("x is less than y")

else:

 print("x is greater than y")

x is less than y

Example 2

We can also use the print formatting option:

x = 10

y = 22

if (x < y):

 print(f"x = {x} is less than y = {y}")

else:

 print("x = {x} is greater than y = {y}")

x = 10 is less than y = 22

Example 3

Write a python if else statement that checks whether a given variable is an even or an odd

number.

x = 7

if (x % 2 == 0):

 print("x is an even number")

else:

 print("x is an odd number")

x is an odd number

 CS2: Computer Science Level 2
 Programming in Python

Example 4

Write a python if else statement that checks whether a given value is even or odd number.

Solution

We are going to use input() function to ask for a value, and as you know, the data type of a variable

gotten from an input function is always a string. Therefore, we are going to convert the result to

an integer by using int() function

Example 5: Game of guess

You want to know whether your friends can guess your ATM password accurately. You wrote

the below code and then ask each and every one of them to enter your password.

Example 6

Test if a is less than

b, AND if c is greater than a:

 CS2: Computer Science Level 2
 Programming in Python

a = 10

b = 13

c = 16

if (a > b and c > a):

 print("Both conditions are True")

else:

 print("None of the conditions is True")

None of the conditions is True

Example 7

Bank transfer experience

amount_in_bank = 500

transfer_amount = 600

if (amount_in_bank > transfer_amount):

 print("Transfer Successful")

else:

 print("Transfer Failed! Not enough funds")

Transfer Failed! Not enough funds

3.1.2 if, elif, else statement

Now let’s imagine we have multiple conditions to check before the final else statement, this is

where we can use the elif keyword to check for as many individual conditions as possible.

Example 1

x = 2

y = 6

if x = = y:

 print('First condition True')

 CS2: Computer Science Level 2
 Programming in Python

elif x > y :

 print("Second condition True")

elif x = = 100:

 print("Third condition True")

else:

 print("None of the above conditions are True")

None of the above conditions are True

Example 2

x = 2

y = 6

if x == y:

 print('First condition True')

elif y > x :

 print("Second condition True")

elif x == 100:

 print("Third condition True")

else:

 print("None of the above conditions are True")

Second condition True

Since y > x, therefore, this condition will be executed

Example 3

Bank transfer experience

amount_in_bank = 600

transfer_amount = 500

if amount_in_bank > transfer_amount :

 print("Transfer Successful")

 CS2: Computer Science Level 2
 Programming in Python

elif amount_in_bank = = transfer_amount :

 print("Transfer successful! Remember to add more fund next time")

else:

 print("Transfer Failed! Not Enough Funds")

Transfer Successful

Class Activity 13

3.2 Python Loops

There are two types of loops in Python

 for loop and

 while loop.

3.2.1 for loop

A for loop is used to iterate over a sequence of object such as list, tuple, set, string or a dictionary.

For loop syntax

for item in object:

 statements to do

What will get printed in the conditional statement

below:

a = 3

b = 5

c = 8

if a >b:

 print("a is greater than b")

elif b>a:

 print("b is greater than a")

 else:

 print("c is greater")

 CS2: Computer Science Level 2
 Programming in Python

The naming of the item is completely up to you, so use your best judgment for choosing a name

that makes sense and you will be able to understand when revisiting your code.

Example 1

With the for loop we can execute a set of statements, once for each item in a set, list, tuple, set

etc. Consider this example that print each fruit in the fridge:

fridge = ["Mango", "Orange", "Apple", "Lemon", "Banana", "Grape", "Cherry", "Avocado", "Wa

termelon"]

for fruit in fridge:

 print(fruit)

Code indentation becomes very important as we begin to work

with loops and control flow.

Example 2

Printing the square of each number in the list

mylist = [1, 2, 3, 4]

for number in mylist:

 print(number**2)

 CS2: Computer Science Level 2
 Programming in Python

As you can see, each of the number in the list has been squared with for loop

Example 3

Print the square of each of the number from 0 to 9 using range function

for i in range(10):

 print(i, ":", i**2)

Example 4

for loop with strings

country = "South Sudan"

for character in country:

 print(character)

As you can see, each character in the South Sudan is being printed.

 CS2: Computer Science Level 2
 Programming in Python

Example 4

for loop with tuple

teachers_name = ("Diric", "Bilen", "Baruk", "Jamal", "Gelila")

for teacher in teachers_name:

 print(f"This is {teacher}")

Example 5

for loop with a dictionary

life_expectancy = {"Nigeria": 60, "Kenya": 69, "Uganda": 68, "Ethiopia": 68, "Sudan": 67,

 "Rwanda": 65, "Tanzania": 64, "Somalia": 54}

Remember that dictionary is a key to value pairs

for country in life_expectancy.keys():

 print(country)

for year in life_expectancy.values():

 print(year)

 CS2: Computer Science Level 2
 Programming in Python

for country in life_expectancy.keys():

 print(country)

 print(life_expectancy[country])

 print('\n')

 CS2: Computer Science Level 2
 Programming in Python

Introduction to continue and break statements in Python

We can use break or continue statement to alter the flow of a normal loop in Python. As you know,

loop iterates over a block of code until the test expression is False. Sometime, we may wish to

terminate or stop the current iteration or even the whole loop without checking test expression. We

therefore, use break and continue statements in these cases.

The continue Statement

With the continue statement, we can stop the current iteration of the loop, and continue with the

next item.

Example 1

Do not print Orange

fruits_list = ["Mango", "Orange", "Apple", "Lemon", "Banana", "Grape", "Cherry", "Avocado",

"Watermelon"]

for fruit in fruits_list:

 if fruit == "Orange":

 continue

 print(fruit)

Orange is not among the fruits that were printed.

Example 2

A score that equals 50 will not be printed

 CS2: Computer Science Level 2
 Programming in Python

score_list = [20, 30, 40, 50, 60]

for score in score_list:

 if score == 50:

 continue

 print("Your score is", score)

Example 3

A farmer in Tigray region of Ethiopia wants to know the list of good eggs in his poultry. An egg

is good if it weighs above 60 grams (g). Use the for loop and continue statement to print out the

good eggs.

egg_weight = [59, 56, 61, 68, 52, 53, 69, 54, 57, 51]

for egg in egg_weight:

 if egg <= 60:

 continue

 print(egg)

You can see that only eggs that weigh more 60 grams (g) are printed out.

Example 4

for letter in 'code':

 if letter = = 'e':

 CS2: Computer Science Level 2
 Programming in Python

 continue

 print('Current Letter is:', letter)

Current Letter is: c

Current Letter is: o

Current Letter is: d

Practice Question 3

Answer to Practice Question 3

Program to show the use of continue statement inside loops

for val in "Ethiopia":

 if val = = "o":

 continue

 print(val)

E

t

h

i

p

i

a

Use the continue statement inside the for loop to skip the character

from printing if the character is o in the string “Ethiopia”.

 CS2: Computer Science Level 2
 Programming in Python

Or use

country = "Ethiopia"

for i in country:

 if i = = "o":

 continue

 print(i)

E

t

h

i

p

i

a

The break Statement

With the break statement, we can stop the loop before it has looped through all the items

Example 1

Exit the loop when fruit is “Grape”:

fridge = ["Mango", "Orange", "Apple", "Lemon", "Banana", "Grape", "Cherry", "Avocado", "Wa

termelon"]

for fruit in fridge:

 print(fruit)

 if fruit = = "Banana":

 break

 CS2: Computer Science Level 2
 Programming in Python

Mango

Orange

Apple

Lemon

Banana

Example 2

Exit the loop when fruit is “Grape”, but this time the break comes before the print:

fridge = ["Mango", "Orange", "Apple", "Banana", "Cherry",]

for fruit in fridge:

 if fruit = = "Banana":

 break

 print(fruit)

Mango

Orange

Apple

Practice Question 4

Answer to Practice Question 4

for val in "Ethiopia":

 if val = = "o":

Use the break statement inside the for loop to stop the

character from printing if the character is o in the string

“Ethiopia”.

 CS2: Computer Science Level 2
 Programming in Python

 break

 print(val)

E

t

h

i

As you can see, when the character is o, the program stops from printing the next character.

Example 3

Loop through the list numbers and print out all even numbers from the numbers list in the same

order they are received. Don’t print any numbers that come after 35 in the sequence.

numbers = [751, 202, 784, 451, 160, 131, 208, 119, 401, 285, 780, 307, 525, 347, 344, 415, 117,

35, 59, 301, 63, 417, 665, 375, 19, 190, 784, 392, 36, 95, 742, 741, 186, 262, 153, 218, 707, 1

44, 36, 175, 623, 366, 397, 778, 128, 415, 753, 145]

for number in numbers:

 if number % 2 == 0:

 print(number)

 if number == 35:

 break

 print(number)

202

784

160

208

780

344

 CS2: Computer Science Level 2
 Programming in Python

Example 4

Loop through the list numbers and print out all even numbers from the numbers list in the same

order they are received.

numbers = [751, 202, 784, 451, 160, 131, 208, 119, 401, 285, 780, 307, 525, 347, 344, 415, 117,

35, 59, 301, 63, 417, 665, 375, 19, 190, 784, 392, 36, 95, 742, 741, 186, 262, 153, 218, 707, 1

44, 36, 175, 623, 366, 397, 778, 128, 415, 753, 145]

for number in numbers:

 if number % 2 = = 0:

 print(number)

202

784

160

208

780

344

190

784

392

36

742

186

262

218

144

36

366

778

128

 CS2: Computer Science Level 2
 Programming in Python

3.2.2 The while loop

A while loop will repeatedly execute a single statement or group of statements as long as the

condition being checked is True. The reason it is called a ‘while loop’ is because the code

statements are looped through over and over again until the condition is no longer True.

Syntax of while Loop

while test_expression: Body of while

Example 1

Print number as long as number is less than 10:

number = 1

while number < 10:

 print(number)

 number = number + 1

1

2

3

4

5

6

7

8

9

As you can see, it only prints number that is less than 10.

You must remember to increase number i.e. number + 1, or else the

loop will continue forever.

 CS2: Computer Science Level 2
 Programming in Python

One unique feature about the while loop is that it requires relevant

variables to be ready, in this example we need to define an indexing

variable, number, which we set to 1.

Example 2

We can also do the increment in this way:

number = 1

while number < 10:

 print(number)

 number += 1

1

2

3

4

5

6

7

8

9

Example 3

Printing number that is less than 20

a = 8

while a < 20:

 CS2: Computer Science Level 2
 Programming in Python

 print(f"{a} is less than 20")

 a = a + 1

Example 4

Printing number that is less than 20

Start by setting variable x to 0

x = 0

while x < 5:

 print('x is currently')

 print(x)

 print("\nAdding 1 to x") # \n is to print to a new line

 x = x + 1 # alternatively you could write x += 1

 CS2: Computer Science Level 2
 Programming in Python

Be careful with the while loop! There is a potential to write a condition

that always remains True. That is, you have an infinite while loop. If

this happens to you, you can stop/restart the kernel.

The continue Statement

With the continue statement we can stop the current operation or iterator, and continue with the

next:

Example 1

Continue to the next iteration if i is 4:

i = 0

while i < 10:

 i += 1

 if i == 4:

 CS2: Computer Science Level 2
 Programming in Python

 continue

 print(i)

Example 2

Continue to the next iteration if number is 7:

number = 0

while number < 10:

 number += 1

 if number = = 7:

 continue

 print(number)

The break Statement

With the break statement we can stop the loop even if the while condition is True.

Example 1

Exit the while loop when i is 10:

 CS2: Computer Science Level 2
 Programming in Python

i = 1

while i < 15:

 print(i)

 if i = = 10:

 break

 i += 1

Example 2

Exit the while loop when x is 3:

x = 0

while x < 10:

 print(x)

 if x == 3:

 break

 x = x +1

0

1

2

3

Example 3

Exit the while loop when x > 12:

x = 0

while x < 20:

 print(x)

 CS2: Computer Science Level 2
 Programming in Python

 if x > 12:

 break

 x = x + 1

General tips for break and continue statements in for and while loops

The break statement is used to exit a for loop or a while loop, whereas continue is used to skip the

current block, and return to the for or while statement.

 CS2: Computer Science Level 2
 Programming in Python

3.3 Python functions

Python function is a block of organized and reusable code that is used to perform a single and

related action. It is a piece of code that runs when it is called or referenced. Python provides many

inbuilt functions like print(), input(), type(), len(), etc. but it also gives freedom to create your

own functions.

3.3.1 Types of Functions

Function extends the functionality of Python. Basically, we can categorize functions into the

following two types:

Built-in functions - Functions that are pre-defined in Python

User-defined functions - Functions defined by the users themselves

Advantages of Python Functions

Function allows us to automate repetitive tasks in a more powerful way than copy-and-pasting.

Writing a function has the following advantages:

 You can give a function a name that makes your code easier to understand and remember.

 As something changes, you only need to update code in one place, instead of many places.

 it avoids repetition and makes the code reusable.

 Improves maintainability of the code.

 CS2: Computer Science Level 2
 Programming in Python

When should you write a function?

You should consider writing a function whenever you have copied and pasted a block of code

more than twice.

3.3.2 Creating a function in Python

You can define functions by following the rules below:

 Function blocks begin with the keyword def followed by the function_name, parentheses

(), a colon (:), and is indented. Function name follows the same rules of naming variables

in Python.

 Any parameters or arguments should be placed within these parentheses. You can add as

many arguments as you want, just separate them with a comma. Parameters (arguments)

helps to pass values to a function. They may be optional sometimes.

 A colon (:) to mark the end of the function header.

 Optional documentation string (docstring) to describe what the function does (for

documentation purposes).

 One or more valid python statements that make up the function body. Statements must have

the same indentation level (Jupyter lab/notebook does this for you when you press return

button after the colon mark).

 Functions may return a value to the caller, using return statement. This is optional.

Function syntax

def functionname(parameters):

 "function_docstring describing what the function does"

 # list of expressions to be executed

 return (expression)

In graphical form, here is a function that returns the sum of two given numbers

 CS2: Computer Science Level 2
 Programming in Python

The terms parameter and argument can be used for the same thing:

information that are passed into a function.

3.3.3 Calling a Function in Python

You can call a function by its name. If the function accepts parameters or arguments, you will have

to pass them while calling the function.

Example 1

def sum_two_numbers(a, b):

 "This function add two numbers together"

 return (a + b)

sum_two_numbers(9, 7)

16

Since function is reusable. We can also get the sum of 6 and 9 by using the sum_two_numbers()

function

sum_two_numbers(6, 9)

15

 CS2: Computer Science Level 2
 Programming in Python

3.3.4 Indentation error

If your code is not well indented inside a function, it will throw an error. For example,

def sum_two_numbers(a, b):

 "This function add two numbers together"

y = a + b # Not well indented

 return (y)

Example 2

The following function takes two numbers as arguments and prints out their sum:

def add(x, y):

 "This function add two numbers together in another form"

 print(f"The sum of {x} and {y} is {x+y}")

add(2, 6)

The sum of 2 and 6 is 8

You may also specify function arguments and supply their values

add(x = 10, y = 32)

The sum of 10 and 32 is 42

3.3.5 Default Arguments in a Function

A default argument is an argument that assumes a default value if a value is not provided in the

function call for that argument. The following example gives an idea on default arguments, it prints

default age if it is not passed.

 CS2: Computer Science Level 2
 Programming in Python

def printinfo(age=25, gender = "Female"):

 "This prints the info about a person"

 print(f"You are a {gender} and your age is {age} years")

printinfo()

You are a Female and your age is 25 years

printinfo(age= 19)

You are a Female and your age is 19 years

printinfo(age = 20, gender= "Male")

You are a Male and your age is 20 years

Example 3

This function prints out the demographic information about a student taken a particular course

def student_info(name, age, gender, course_code, country):

 print(f"Information about a student taken {course_code} course:")

 print ("Name:", name)

 print ("Age:", age)

 print ("Gender:", gender)

 print("Country:", country)

Now you can call student_info function

student_info(name = "Zula", age = 18, gender = "Female", course_code = "CS 22", country= "Et

hiopia")

Information about a student taken CS 22 course:

Name: Zula

Age: 18

Gender: Female

Country: Ethiopia

 CS2: Computer Science Level 2
 Programming in Python

student_info(name = "Safari", age = 21, gender = "Male", course_code = "CS 21", country= "Ke

nya")

Information about a student taken CS 21 course:

Name: Safari

Age: 21

Gender: Male

Country: Kenya

Example 4

Your function can also take user input. For example:

A function can have multiple return statements. However, when one

of the return statements is True, the function execution will terminate

and the value is returned to the caller.

Example 5

def even_odd_checker(number):

 if number % 2 == 0:

 CS2: Computer Science Level 2
 Programming in Python

 return("Even")

 else:

 return("Odd")

even_odd_checker(14)

‘Even’

even_odd_checker(number= 19)

‘Odd’

Example 6

This task was taken from DataCamp!

Add a function named list_benefits() that returns the following list of strings: “More organized

code”, “More readable code”, “Easier code reuse”, “Allowing programmers to share and connect

code together”

list_of_strings = ["More organized code", "More readable code", "Easier code reuse",

 "Allowing programmers to share and connect code together"]

def list_benefits():

 for string in list_of_strings:

 print(string) # If you use return statement instead of print, only "More organised code" will

be returned

list_benefits()

More organized code

More readable code

Easier code reuse

Allowing programmers to share and connect code together

Alternatively, we can write it in this way:

 CS2: Computer Science Level 2
 Programming in Python

def list_benefits(benefit):

 for i in benefit:

 print(i)

list_of_strings = ["More organized code", "More readable code", "Easier code reuse",

 "Allowing programmers to share and connect code together"]

list_benefits(list_of_strings)

More organized code

More readable code

Easier code reuse

Allowing programmers to share and connect code together

Class activity 16 (Peer to peer review activity)

 Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the discussion

 Write a function that asks the user to enter two numbers. This

function will print their sum and their difference each on a single line.

 Write a function that prompts the user to enter an integer n and

outputs the letter “x”, n times on a single line, without a space.

 Write a function to convert to Fahrenheit a temperature given in degree Celsius.

You can use this formula:

Tc ∗ 1.8 + 32

where Tc is the Celsius degree to be converted.

 CS2: Computer Science Level 2
 Programming in Python

3.3.6 Anonymous function

Anonymous functions don’t have a name and is not declared in the standard manner of a function

by using the def keyword. We can define anonymous function in Python using lambda keyword.

Syntax

lambda arguments : expression

Anonymous function is also known as lambda function. The expression

in the lambda function is executed and the result is returned

Example 1

Write an anonymous function to find the square of a given number

square = lambda x : x ** 2

The argument of this function is x while x ** 2 is the expression that we want to evaluate. A

lambda function can take any number of arguments, but can only have one expression. You can

call an anonymous function by its name and supply values to its arguments.

square(x = 10)

100

Use your function to convert the following Celsius to Fahrenheit

 100

 75

 120

 CS2: Computer Science Level 2
 Programming in Python

square(8)

64

Example 2

Multiply two numbers together and return the result:

product = lambda x, y : x * y

product(2, 6)

12

product(2, 8)

16

Class Activity 17

Additional resources

For more resources in this section please consider the following:

 https://www.guru99.com/functions-in-python.html

Create a lambda function to calculate the difference between two

numbers.

Use your lambda function to calculate the sum of

 -18 and 20

 19 and 21

 16 and 5

https://www.guru99.com/functions-in-python.html

 CS2: Computer Science Level 2
 Programming in Python

3.4 Introduction to Python libraries

A library is a collection of Python functions that are written in Modules to extends basic Python

functionality. A library can contain a set of functions relating to a specific topic or tasks. For

example, Pandas for data manipulation and analysis, NumPy for scientific computing and

manipulation n-dimensional arrays, Matplotlib and Seaborn for data visualization while scikit-

learn is for building machine learning models.

Module is a file which contains various Python functions with the

.py extension file which has python executable code.

Package is a collection of modules.

Library is a collection of packages.

3.4.1 How to import Python package

Before you can use any function in a package, you will need to import the module that has that

function. To import a module, simply type

import module_name

For example, if I want to import a NumPy module, I will type

import numpy

The following statement allows us to use a module attribute (or function).

module_name.attribute

This means that we will have to refer to the function in dot notation. For example:

module_name.function

The NumPy module provides various scientific functions e.g. trigonometric functions, exponent,

logarithm, and mathematical constant.

import numpy

We can use the module in the following ways:

 CS2: Computer Science Level 2
 Programming in Python

Example 1

For the constant 𝜋 (pi) which is rounded to 3.142

numpy.pi

3.141592653589793

Example 2

For the square root of 16 (√16)

numpy.sqrt(16)

4.0

To load selected functions from a module, we use the following syntax

from module_name import funcname

For example, import only sqrt, pi, floor from numpy module

from numpy import sqrt, pi, floor

You can then use those functions without referencing numpy again.

Example 1

sqrt(64)

8.0

Example 2

pi

3.141592653589793

Example 3

floor(3.141592653589793) # This function only returns the integer part.

3.0

 CS2: Computer Science Level 2
 Programming in Python

3.4.2 Importing packages with alias

It is common for Python users to import packages with some alias. Alias helps us to shorten the

name of the packages while referencing a certain function with it.

The syntax looks like this:

import module_name as another_name

For example,

import numpy as np

We can now refer to the function as np.function_name rather than numpy.function_name

Example 1

For the constant 𝜋 (pi) which is rounded to 3.142

np.pi

3.141592653589793

Example 2

For the square root of 16 (√16)

np.sqrt(16)

4.0

For some other modules, it is common to use aliases. for example, consider the following data

science packages:

 Pandas

 Matplotlib.pyplot

 Seaborn

We can import them as follows:

 CS2: Computer Science Level 2
 Programming in Python

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

We have come to the end of the introduction to Python programming (CS 2 1). In the next course,

which is Introduction to Data Science I (CS2 2), you will learn everything about data science. I

hope to see you there. Best and have fun!

Class activity 18 (Peer to peer review activity)

 Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the

discussion

 Search for any other packages in Python that we have

not used in this course.

 Import them.

 CS2: Computer Science Level 2
 Programming in Python

Summary of Study Unit 3

In this study unit, you have learnt that:

1. Conditional statement in Python includes if else statement

2. Python has two loops, the for loop and the while loop

3. continue and break statements can be used in both for loop and while loop

4. Python has built-in functions and user-defined functions

5. Built-in functions in Python includes print(), input(), and int().

6. An anonymous function always has the syntax lambda arguments: expression

7. Python libraries can be imported by using import keyword

	Terminologies, Acronyms and their Meaning
	3.1 Conditional Statements in Python
	3.1.1 The if and else statement
	3.1.2 if, elif, else statement
	Class Activity 13

	3.2 Python Loops
	3.2.1 for loop
	For loop syntax
	Introduction to continue and break statements in Python
	Practice Question 3
	The break Statement
	Practice Question 4

	3.2.2 The while loop
	The continue Statement
	The break Statement
	General tips for break and continue statements in for and while loops

	3.3 Python functions
	3.3.1 Types of Functions
	Advantages of Python Functions
	When should you write a function?

	3.3.2 Creating a function in Python
	Function syntax

	3.3.3 Calling a Function in Python
	3.3.4 Indentation error
	3.3.5 Default Arguments in a Function
	Class activity 16 (Peer to peer review activity)

	3.3.6 Anonymous function
	Class Activity 17

	3.4 Introduction to Python libraries
	3.4.1 How to import Python package
	3.4.2 Importing packages with alias
	Class activity 18 (Peer to peer review activity)

	Summary of Study Unit 3

