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Machine learning

Preamble

Learning Outcomes of Study Unit 3

Scikit-learn is a library in Python that provides many supervised learning
and unsupervised algorithms. It is built upon some of the packages you
already familiar with, like NumPy, Pandas, and Matplotlib. With Scikit-
learn module, you can train different machine learning models such as
regression and classification and check their performance using any of the

metrics discussed in unit 2.

Upon completion of this study unit, you should be able to:

3.1 Train and evaluate classification models for predicting unknown
categorical label and Solving problem using exploratory data analysis

techniques.

3.2 Train and evaluate Logistic regression models for predicting

unknown continuous label

3.3 Train and evaluate Logistic regression models for predicting
unknown continuous label and how to select best model among the

trained models

3.4 Compete on Kaggle for machine learning and data science

competition
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Terminologies, Acronyms and their Meaning

Al Artificial Intelligence pd Pandas
. . TP True Positive
ML Machine Learning
. . FP False Positive
RL Reinforcement Learning
. FN False Negative
DL Deep learning
. TN True Negative
EDA Exploratory Data Analysis
RMSE Root Mean Squared Error
np NumPy
sns Seaborn

3.1 Introduction to machine learning module: The Scikit-learn

The functionality that scikit-learn provides include:

4+ Regression

4+ Classification

4+ Clustering

+ Model selection

4+ Preprocessing
Installation

The easiest way to install scikit-learn is by running the following on your terminal:

pip install -U scikit-learn

or

conda install -c conda-forge scikit-learn

Importing Scikit-learn module for classification models

Some of the classification models that can be imported from sklearn library includes:
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Logistic Regression: from sklearn.linear_model import LogisticRegression

K Nearest Neighbor: from sklearn.neighbors import KNeighborsClassifier
Support Vector Machine: from sklearn.svm import SVC

Decision Trees Classifier: from sklearn.tree import DecisionTreeRegressor
Random Forest Classifier: from sklearn.ensemble import RandomForestClassifier

Gradient Boost Classifier: from sklearn.ensemble import
GradientBoostingClassifier

Importing Scikit-learn module for regression models

Some of the regression models that can be imported from sklearn library includes:

*
*

*

Linear Regression: from sklearn.linear_model import LinearRegression

K Nearest Neighbor Regressor: from sklearn.neighbors import
KNeighborsRegressor

Support Vector Machine: from sklearn.svm import SVR
Decision Trees Regressor: from sklearn.tree import DecisionTreeRegressor

Random Forest Regressor: from sklearn.ensemble import
RandomForestRegressor

Gradient Boost Regressor: from sklearn.ensemble import
GradientBoostingRegressor

3.1.1 Classification Machine Learning Model with Health Provider dataset in Ethiopia
Problem statement

You work as an analyst in the marketing department of a company that provides various

medical insurance in Ethiopia. Your manager is unhappy with the low sales volume of a

specific kind of insurance. The data engineer provides you with a sample dataset for those

that visit the company website for medical insurance.

The dataset contains the following columns:

+*
*

User ID

Gender

+ Age
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+
+

Salary
Purchase: An indicator of whether the users purchased (1) or not-purchased (0) a

particular product.

We plan to use the following classifier to predict whether a person that visits the insurance

company will buy or not.

+
+
+
+
+

Logistic regression
Random forest
Naive Bayes
XGBoost

Support Vector Machine (SVM)

Import Python modules

We need to import some packages that will enable us to explore the data and build machine

learning models

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

insurance = pd.read_csv("datasets/Medical_insurance_dataset.csv")

insurance.head(5)
User ID Gender Age EstimatedSalary Purchased
0 15624510 Male 1a 18000 not-purchased
1 153510944 Male 35 20000 not-purchased
2 1368452% Female 32 150000 purchased
3 15668573 Female 26 43000 not-purchased
4 13603246 Female 27 57000 not-purchased

15733883 Male 47 25000 purchased
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insurance.shape
(400, 5)

We have 5 variables and 400 instances of those that want to buy medical insurance or not in
this data. The User ID is a random number generated for every customer to comes to the
company for medical insurance. Therefore, it is not useful in predicting whether the person

will buy medical insurance or not. We will therefore, remove that variable from the data.
insurance.drop(["User ID"], axis= "columns", inplace = True)

insurance.head()

Gender Age EstimatedSalary Purchased
0 Male 15 18000 not-purchased
1 Male 35 20000 not-purchased
2 Female 32 150000 purchased
3 Female 26 43000 not-purchased
4 Female 27 57000 not-purchased

We want to transform or recode the label Purchased to have 1 for those that bought the
insurance and 0 for those that did not purchased the insurance. This will transform the

output variable (label) to be numeric.

insurance["Purchased"] = insurance["Purchased"].apply(lambda x: 1 if x == "pu

rchased" else 0)
insurance.head()

Gender Age EstimatedSalary Purchased

0 Male 19 19000 0
1 Male 35 20000 0
2 Female 32 150000

3 Female 26 43000 0

4 Female 27 57000 0
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Now we have 3 features that include gender, age, and estimated salary while purchased
is the label in this data. Since the label has just two classes or categories (purchased (1) and

not-purchased (0)), this is a binary classification problem.

3.1.2 Exploratory Data Analysis

Fact generated by data exploratory will help us to know those features that can predict
whether a person will purchase medical insurance or not. Let us start by visualizing the

proportion of those that want to buy medical insurance or not.

sns.countplot(x = "Purchased", data = insurance);
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As you can see, majority of those that visit the medical insurance company did not want to
buy the insurance. This is an example of class imbalanced. That is, there is no equal

proportion of those that will buy or not.

sns.countplot(x = "Gender", data = insurance);



. I S I I CS3: Computer Science Level 3

Digital Innovation and Skills Hub

200 -

175

150 -

125

count

100 ~

75 1

Male Female
Gender

The proportion of males are almost the same as females.

sns.countplot(x = "Gender", hue = "Purchased", data = insurance)
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[t seems that more females would purchase the insurance when compare with males.
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sns.boxplot(x = "Purchased", y = "Age", data = insurance);

20 +

Purchased

From the look of things, other people purchased the insurance compared with the younger

people.

sns.boxplot(x = "Purchased", y = "EstimatedSalary", data = insurance);
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People that earned higher salary purchased the insurance while those that earned low did
not purchase the insurance. Of course, it is expected you purchase a medical insurance when

you have money.

Importing machine learning models

from sklearn import metrics # For model evaluation
from sklearn.model selection import train_test split # To divide the data int

o training and test set

3.1.3 Data Preprocessing

Separating features and the label from the data

Now is the time to build machine learning models for the task of predicting whether the
customers will buy medical insurance or not. Therefore, we shall separate the set of features

(X) from the label (Y).

# split data into features and target
X = insurance.drop(["Purchased"], axis= "columns") # dropping the Label varia

ble (Purchased) from the data
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y = insurance["Purchased"]

X.head()

Gender Age EstimatedSalary

0 Male 19 15000

1 Male 35 20000

2 Female 32 50000

3 Female 26 43000

4 Female 27 57000
y.head()

ol R D
[cx I cw I S s

Name: Purchased, dtype: inted

One-hot encoding

As discussed in data preprocessing, we need to create a one-hot encoding for all the

categorical features in the data because some algorithms cannot work with categorical data
directly. They require all input variables and output variables to be numeric. In this case, we

will create a one-hot encoding for the gender feature by using pd.get_dummies().

pd.get_dummies(insurance[ "Gender"])
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Female Male

0 0
1 0 1
2 0
3 1 0
4 0
395 1 0
396 0 1
397 1 0
398 0 1
399 1 0

400 rows = 2 columns

In fact, pd.get_dummies( ) is very powerful to actually locate the categorical features and

create a one-hot encoding for them. For example:

pd.get_dummies(X)

Age EstimatedSalary Gender_Female Gender_Male

0 19 19000 0

1 35 20000 0 1

2 32 150000 1 0

3 26 43000 1 0

4 7 37000 1 0
395 46 41000 1 0
3% 3 23000 0 1
397 30 20000 1 0
398 36 33000 0 1
399 4% 36000 1 0

400 rows = 4 columns

We now save this one-hot encoding result into X.
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X = pd.get_dummies(X)

X.head()

Age EstimatedSalary Gender Female Gender Male

0 9 40

1 35 20000 0

2 32 150000

3 26 43000 0
4 7 570

Split the data into training and test set

As discussed in A, We will split our dataset (Features (X) and Label (Y)) into training and test
data by using train_test_split( ) function from the sklearn. The training set will be 80% while
the test set will be 20%. The random_state thatis set to 1234 is for all of us to have the same

set of data. It can be set to any number of choices.

X_train, X_test, y train, y test = train_test split(X, y, test size = 0.2, ra
ndom_state= 1234)

We now have the pair of training data (X_train, y_train) and test data (X_test, y_test)

3.2 Model training and evaluation

We will use the training data to build the model and then use test data to make prediction

and evaluation respectively.
3.2.1 Logistic regression

Let’s train a Logistic regression model with our training data. We need to import the Logistic

regression from the sklearn model

# Fitting Logistic Regression to the Training set

from sklearn.linear_model import LogisticRegression

We now create an object of class LogisticRegression() to train the model on
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logisticmodel = LogisticRegression()

logisticmodel.fit(X_train, y_train)
LogisticRegression()

logisticmodel.fit trained the Logistic regression model. The model is now ready to make

prediction for the unknown label by using only the features from the test data (X_test).
logisticmodel.predict(X_test)

array([o0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
000000000000000000000000000000000000000,0,
0,0,0,0])

Let’s save the prediction result into logistic_prediction. This is what the model predicted

for us.

logistic_prediction = logisticmodel.predict(X_test)

Model evaluation

Since we know the true label in the test set (i.e. y_test), we can compare this prediction with
it, hence evaluate the logistic model. I have created a function that will help you visualize a
confusion matrix for the logistic model and you can call on it henceforth to check the

performance of any model.

def ConfusionMatrix(ytest, ypred, label = ["Negative", "Positive"]):
"A beautiful confusion matrix function to check the model performance"
from sklearn.metrics import confusion_matrix
import seaborn as sns
cm = confusion matrix(ytest, ypred)
plt.figure(figsize=(7, 5))
sns.heatmap(cm, annot = True, cbar = False, fmt = 'd', cmap = 'Y1Gn")
plt.xlabel( 'Predicted', fontsize = 13)
plt.xticks([@.5, 1.5], label)
plt.yticks([©.5, 1.5], label)
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plt.ylabel( 'Truth', fontsize = 13)
plt.title('A confusion matrix');

By using the ConfusionMatrix( ) function, we have:

ConfusionMatrix(y_test, logistic_prediction, label= ["not-purchased"”, "purcha
sed"])

A confusion matrix

s 0

1)
w
m
=
=
=
!I]_

c =
Q

)

E =

=
= 26 0
i
7]
[1+]
=
]
=
[=%

| |
not-purchased purchased

Predicted

Interpretation of the logistic regression model evaluation performance

4+ There are 54 True Negatives (TN): predicting that the customer will not buy the

insurance and truly the customer did not buy the insurance.

4+ There are 26 False Negative (FN): predicting that the customer will not buy the

insurance and the customer actually bought the insurance.

Evaluation metric

We will use some functions such accuracy and F1-score from metrics module.

We can check the accuracy by using:
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metrics.accuracy_score(y_test, logistic_prediction)
0.675

The accuracy of the model is 66.25%. We cannot trust this accuracy since the data is class

imbalanced. Therefore, we are going to use F1 score instead.

metrics.fl _score(y_test, logistic_prediction)
0.0

As you can see from the confusion matrix and the result of F1 score, this model is not efficient

to predict whether or not a customer will buy the insurance.

Naive Bayes

Let’s train a Naive Bayes classifier with our training data. We need to import the model

from the sklearn model

from sklearn.naive_bayes import GaussianNB
naivemodel = GaussianNB()

naivemodel.fit(X train, y_train)
GaussianNB()

naivemodel.fit() trained the Naive Bayes model. The model is now ready to make prediction

for the unknown label by using only the features from the test data (X_test).
naivemodel prediction = naivemodel.predict(X_test)

You can call one naivemodel_predictionto see the prediction

naivemodel prediction

array([o,0,0,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,1,0,0,1,0,0,0,1,0,1,0,1,0,0,0,0, 1, 0,
0,100100000011000016000110,10,100,10,00,10,0,0,0,0,1,
0,0,0,0])

By using the ConfusionMatrix() function, we can see how the model performed:
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ConfusionMatrix(y_test, naivemodel prediction, label= ["not-purchased", "purc
hased"])

A confusion matrix
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Interpretation of the Naive model evaluation performance
4+ There are 49 True Negatives (TN): predicting that the customer will not buy the
insurance and truly the customer did not buy the insurance.

4+ There are 19 True Positives (TP): predicting that the customer will buy the insurance

and truly the customer did buy the insurance.

4+ There are 7 False Negatives (FN): predicting that the customer will not buy the

insurance and the customer actually bought the insurance.

4+ There are 5 False Positives (FN): predicting that the customer will buy the insurance

and the customer did not buy the insurance.

Evaluation metrics

We are going to check the accuracy and F1 score of them model.

We can check the accuracy by using:
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metrics.accuracy_score(y_test, naivemodel prediction)
0.85

The accuracy of the model is 85%

We can check the F1 score by using:
metrics.fl_score(y_test, naivemodel_prediction)

0.76

The F1 score of the model is 76%

As you can see, this model seems good in predicting whether a patient will buy insurance

or not.
3.2.2 Random Forest Model

Let’s train a Random Forest model with our training data. We need to import the Random

Forest model from the sklearn module

from sklearn.ensemble import RandomForestClassifier
randomforestmodel = RandomForestClassifier()

randomforestmodel.fit(X train, y train)
RandomForestClassifier()

randomforestmodel.fit() trained the Random Forest model on the training data. The model
is now ready to make prediction for the unknown label by using only the features from the

test data (X_test).

randomforestmodel prediction = randomforestmodel.predict(X_ test)

You can call one randomforestmodel_prediction to see the prediction

randomforestmodel_prediction
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array([o,0,0,0,1,1,0,1,0,0,1,0,1,0,0,1,0,1,1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0, 1, 0,
0,.01,1,00010011010010001,10,10,10,01,0,0,0,1,0,0,0,0,0, 1,
0,0,0,0]

By using the ConfusionMatrix() function, we can see how the model performed:

ConfusionMatrix(y_test, randomforestmodel prediction, label= ["not-purchased"

, "purchased"])

A confusion matrix
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Interpretation of the Random Forest model evaluation performance

+ There are 45 True Negatives (TN): predicting that the customer will not buy the
insurance and truly the customer did not buy the insurance.

4+ There are 22 True Positives (TP): predicting that the customer will buy the insurance
and truly the customer did buy the insurance.

4+ There are 4 False Negatives (FN): predicting that the customer will not buy the

insurance and the customer actually bought the insurance.
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+ There are 9 False Positives (FN): predicting that the customer will buy the insurance

and the customer did not buy the insurance.

Evaluation metrics

We are going to check the accuracy and F1 score of them model.

We can check the accuracy by using:
metrics.accuracy score(y test, randomforestmodel prediction)
0.8375

The accuracy of the model is 83.75%

We can check the F1 score by using:

metrics.fl_score(y_test, randomforestmodel prediction)
0.7719298245614036

The F1 score of the model is 77.19%

As you can see, this model seems good in predicting whether a patient will buy insurance

or not.
3.2.3 Extreme Gradient Boost (XGBoost) Model

Let’s train an XGBoost model with our training data. We need to import the XGBoost model
from the sklearn module but before we do that, we need to install the module because it is

not available in the sklearn.

How to install XGBoost

Go to your termina and type pip install xgboost

pip install xgboost
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PS C:\Users\OGUNDEPO EZEKIEL .A> install xgboost
Collecting xgboost

Downloading xgboost-1.3.3-py3-none-win_amdéd.whl (95.2 MEB)

| | 95.2 MB 17 KB/s

Regquirement already satisfied: numpy in c:\users‘ogundepo ezekiel .a\anacondad\lib\site-packages (from xgboost) (1.19.2)
Reguirement zlready satisfied: scipy in c:l\users‘ogundepo ezekiel .a\@nacondad'lib‘\site-packages (from xgboost) (1.5.2)
Installing collected packages: xgboost
Successfully installed xgboost-1.3.3
PS Ci'\Users\OGUNDEPQ EZEKIEL .A> |:|

After installation, you can now import it as follows:

from xgboost import XGBClassifier
xgboostmodel = XGBClassifier(use_label encoder=False)

xgbboostmodel = xgboostmodel.fit(X_train, y_train)

xgboostmodel.fit() trained the XGBoost model on the training data. The model is now ready
to make prediction for the unknown label by using only the features from the test data

(X_test).
xgbboostmodel prediction = xgboostmodel.predict(X_test)
You can call on xgbboostmodel_prediction to see the prediction

xgbboostmodel prediction

array([0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,1,0,1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0,0, 1, 0,
000100001001100001000100101001,0,0,0,1,0,0,0,0,0,0,
0,0,0,0])

By using the ConfusionMatrix( ) function, we can see how the model performed:

ConfusionMatrix(y_test, xgbboostmodel prediction, label= ["not-purchased", "p

urchased"])
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A confusion matrix
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Interpretation of the XGBoost model evaluation performance

4+ There are 46 True Negatives (TN): predicting that the customer will not buy the
insurance and truly the customer did not buy the insurance.

4+ There are 18 True Positives (TP): predicting that the customer will buy the insurance

and truly the customer did buy the insurance.

4+ There are 8 False Negatives (FN): predicting that the customer will not buy the
insurance and the customer actually bought the insurance.

4+ There are 8 False Positives (FN): predicting that the customer will buy the insurance

and the customer did not buy the insurance.

Evaluation metrics

We are going to check the accuracy and F1 score of the model.
We can check the accuracy by using:

metrics.accuracy_score(y_test, xgbboostmodel prediction)

0.8
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The accuracy of the model is 80%

We can check the F1 score by using:

metrics.fl _score(y_test, xgbboostmodel prediction)
0.6923076923076923

The F1 score of the model is 69.23%

As you can see, this model seems good in predicting whether a patient will buy insurance or

not.
3.2.4 Support Vector Machine (SVM)

Let’s train a Support Vector Machine model with our training data. We need to import the

Support Vector Machine model from the sklearn module

from sklearn.svm import SVC
SVMmodel = SVC()
SVMmodel.fit(X_train, y_train)

SVC()

SVMmodel.fit() trained the Support Vector Machine on the training data. The model is now
ready to make prediction for the unknown label by using only the features from the test data

(X_test).

SVMmodel prediction = SVMmodel.predict(X_test)

You can call on SVMmodel_prediction to see what has been predicted.
SVMmodel prediction

array([0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,1,1,0,0,1,0,0,0,0,0,1,0,0, 0,0,
0001100000000000000001,10001001,000,10,0,0,0,0,1,
0,0,0,0]

By using the ConfusionMatrix( ) function, we can see how the model performed:
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ConfusionMatrix(y_test, SVMmodel prediction, label= ["not-purchased", "purcha
sed"])

A confusion matrix
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Interpretation of the Random Forest model evaluation performance
4+ There are 51 True Negatives (TN): predicting that the customer will not buy the
insurance and truly the customer did not buy the insurance.

4+ There are 13 True Positives (TP): predicting that the customer will buy the insurance

and truly the customer did buy the insurance.

4+ There are 13 False Negatives (FN): predicting that the customer will not buy the

insurance and the customer actually bought the insurance.

4+ There are 3 False Positives (FN): predicting that the customer will buy the insurance

and the customer did not buy the insurance.

Evaluation metrics

We are going to check the accuracy and F1 score of the model.

We can check the accuracy by using:
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metrics.accuracy_score(y_test, SVMmodel prediction)
0.8

The accuracy of the model is 80%

We can check the F1 score by using:

metrics.fl score(y_test, SVMmodel prediction)
0.6190476190476191

The F1 score of the model is 61.9%

As you can see, this model seems good in predicting whether a patient will buy insurance or

not.

Models Summary

Model (s) Accuracy (%) F1-score (%)
Logistic regression 67.5 0

Naive Bayes 85 76

Random Forest 83.75 77.19
XGBoost 80 69.23

SVM 80 61.9

Having train all the five (5) models, we can see that the best model that can accurately predict

whether a customer will buy the insurance or not is the Random Forest Model.
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Class activity 1 (Peer to peer review activity)

Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the discussion

Use the following models to predict whether a customer will buy
insurance or not. Your teacher has also included how to import

those models for you.

‘ K ) + K Nearest Neighbor: from sklearn.neighbors import
: ) :)\\ /‘U' \ )\ / \/‘\' /& ' KNeighborsClassifier
\ J { “ { | \ |
® }/Llj} / 'L}J \ 4Lr 1 \\ + Decision Trees Classifier: from sklearn.tree import

DecisionTreeClassifier

w , \ \

+ Gradient Boost Classifier: from sklearn.ensemble import
GradientBoostingClassifier

Which of the three (3) model is the best in term of the F1 score?

Class activity 2

The employee retention dataset (HR_comma_sep.csv) from
https://www.kaggle.com/giripujar/hr-analytics can be seen in the activity
directory. The dataset is from Human resources department of one big company

in Somalia. The HR want to determine what is making the staff to leave the

company and they have tasked you, a data scientist, to build a model to predict

who is like to leave the company. The label in the dataset is left (retention):

1. Do some exploratory data analysis to figure out which variables have direct and clear impact on

employee retention (i.e. whether they leave the company or continue to work)
Plot bar charts showing impact of employee salaries on retention
Plot bar charts showing correlation between department and employee retention

Build at least three classification models for the dataset

AN

Measure the accuracy of those models
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6.

Which model is the best among the models trained?

3.3 Regression Machine Learning Model with Kenya restaurant

dataset

The objective of the regression task is to predict the amount of tip (gratuity in Kenya Shilling)
given to a food server based on total_bill, gender, smoker (whether they smoke in the party
or not), day(day of the week for the party), time(time of the day whether for lunch or dinner),

and size(size of the party).
Label: The label for this problem is tip.

Features: There are 6 features and they include total bill, gender, smoker, day, time, and

size.

We plan to use the following regression models (regressor) to predict the amount of tips

that will be given during a particular party in the restaurant:

4+ Ordinary Least Square (OLS)
4+ Support Vector Machine (SVM)
4+ Extreme Gradient Boosting (XGBoost)
4+ Decision Tree
+ Random Forest
3.3.1 Import Python modules

We need to import some packages that will enable us to explore the data and build machine

learning models

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt




import seaborn as sns

from pandas_profiling import ProfileReport

tip = pd.read_csv("datasets/tips.csv")

tip.head(10)
total_bill tip

0 2125350 38079
1 272718 25842
2 106602 27468
3 349345 337.90
4 347036 567.58
5 2411.08 29648
6 480743 37496
T 116521 TOOQ.B7
8 239504 34771
9 262254 25397

tip.shape

(744, 7)

gender

hale
Female
Female
Female

Male
Female
Female
Female

Male

hale

smoker

Mo

Mo

Yes

Mo

s

Yes

Mo

Mo

Mo

ez

day
Thuur
Sun
Thuur
Sun
Sun
Thur
Thur
hon
Sat

Thur

time

Lunch

Dinner

Dinner

Dinner

Lunch

Lunch

Dinner

Dinner

Dinner

Lunch

size

Ln

a2

.

L
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We can use pandas_profiling to do some data exploration before training our models

tip.profile_report()



. I S I I CS3: Computer Science Level 3

Digital Innovation and Skills Hub

Overview

m Warnings o Reproduction
Dataset statistics Variable types
Number of variables 7 Numeric 3
Number of observations 744 Categorical 3
Missing cells 0 Boolean 1
Missing cells (%) 0.0%
Duplicate rows. 1
Duplicate rows (%) 0.1%
Total size in memory 40.8 KiB

Average record size in memory 56.2B
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Variables

total_bill

Real number (Rz.p)

tip

Real number (Fzg)

gender
Categorical

smoker
Boolean

Distinct
Distinct (%)
Missing
Missing (%)
Infinite
Infinite (%)

Distinct
Distinct (%)
Missing
Missing (%)
Infinite
Infinite (%)

Distinct
Distinct (%)
Missing
Missing (%)

Memory size

Distinct
Distinct (%)
Missing
Missing (%)

Memory size

636 Mean
85.5% Minimum
0 Maximum
0.0% Zeros

0 Zeros (%)
0.0% Memory size
364 Mean
48.9% Minimum
0 Maximum
0.0% Zeros

] Zeros (%)
0.0% Memory size
2

0.3%

0

0.0%

5.9KiB

2

0.3%

0

0.0%

8720B
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2165.00664

4469

5538.29

0
0.0%

59 KB

I.ll-..l. I.

&

Toggle details

° &

3259480914

0
1090

0.1%
59 KiB

|J'|I|I 'li il.lLll..h.. .
s

$ & H

Male
Female

Toggle details

False 398
True 346

Toggle details
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day

Categorical

time
Categorical

size
Real number (Rzg)

Distinct
Distinct (%)
Missing
Missing (%)

Memory size

Distinct
Distinct (%)
Missing
Missing (%)

Memory size

Distinct
Distinct (%)
Missing
Missing (%)
Infinite
Infinite (%)

0.9%

0.0%
5.9KiB

0.3%

0.0%
59 KiB

0.8%

0.0%

0.0%

Mean
Minimum
Maximum
Zeros
Zeros (%)

Memory size

CS3: Computer Science Level 3

Sat

Sun

Thur

Fri

Tues

Other values (2)

Toggle details

Dinner
Lunch

Toggle details

3180107527
1
6

0
o . ..
" @ B » @ @

59 KiB

Toggle details
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Interactions

total_bill tip size
totalbill | tp  size
5000
4000
E, 3000
5
S
2000
1000

a

800
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1000
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Correlations

Pearson's r Spearman's p Kendall's 7 Phik (pk) Cramér's V (gc)

total_bill
tip

size

lip
size

%
=
e

Missing values

Count Matrix

1.0
0.8
0.6
0.4
0.2

0.0

\O,)/

. < <
W o (3"9 bls\

NS

A simple visualization of nullity by column

N

0.25

0.00

=0.25

-0.50

-0.75

-1.00

e
<o
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Toggle cormrelation descriptions

744

595

297

148
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First rows
total_bill tip gender smoker day time size
0 212550 360.79  Male No Thur  Lunch 1
1 272718 259.42 Female HNo Sun  Dinner 5
2 1066.02 27463 Female Yes Thur Dinner 4
3 348345 33790 Female HNo Sun  Dinner 1
4 347056 567.89 Male fes Sun  Lunch &
5 241108 29645 Female Yes Thur Lunch 2
6 460743 37496 Female MNo Thur Dinner 4
7 116521 700.87 Female MNo Mon  Dinner 2
& 269504 34771 Male Mo Sat  Dinner 5
9 262254 233.97 Male es Thur Lunch &
Last rows
total_bill tip gender =mocker day time size
734 169277 327.00  Male Yes Sat  Dinner 2
735 109763 13825 Male Mo Sat  Dinner 2
736 137340 109.00 Male Ves Sat  Dinner 2
TIT 357847 12753 Male es Sat  Dinner 2
738 390547 509.03 Female MNo Sat  Dinner 3
739 316427 64528  Male Mo Sat  Dinner 3
740 295262 218.00 Female Yes Sat  Dinner 2
741 247103 215.00 Male es Sat  Dinner 2
742 194238 190.75 Male Mo Sat  Dinner 2
743 204702 32700 Female Mo Thur  Dinner 2

Duplicate rows

Most frequent

total_hbill tip gender smoker day time size count

0 14170 218.0 Female Yes Thur Lunch 2 2

Report generated with pandas-profiling

We can also explore the relationship between the amount of tip and categorical variables

tip vs. gender
sns.boxplot(x = "gender", y = "tip", data = tip)
plt.ylabel("Amount of tip");
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Digital Innovation and Skills Hub

+
1000 *
800 4 ¢
L]
=
]
‘5 600 1
1=
=
[=]
E
<L 400 -
200 4
0 -
T T
Male Female

gender

The amount of tips given by both gender is almost the same although there was an extreme

amount of tip given by some men.

tip vs. smoker

sns.boxplot(x = "smoker", y = "tip", data = tip)

plt.ylabel("Amount of tip");
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Digital Innovation and Skills Hub

+
1000 ’
800 ¢ i
=2
]
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<L 400 -
200 -
0_
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No Yes

smoker

Smoker and non-smoker gave almost amount of tip.

tip vs. time
sns.boxplot(x = "time", y = "tip", data = tip)

plt.ylabel("Amount of tip");
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Smoker and non-smoker gave almost amount of tip.

3.3.2 Model building
After getting some insight about the data, we can now prepare the data for machine learning

modelling

Importing machine learning models

from sklearn import metrics # For model evaluation
from sklearn.model selection import train_test split # To divide the data int

o training and test set

Data Preprocessing
Separating features and the label from the data

Now is the time to build machine learning models for the task of predicting the amount of tip
that would be given for any party in the restaurant. Therefore, we shall separate the set of

features (X) from the label (Y).

tip.head(4)



0

total_bill tip

212550 360.79

272718 25942

108602 274.68

349345 337.90

gender

ale
Femals
remale

remale

smoker day

Mo Thur
Mo  Sun
Yes  Thur

Mo Sun

time

Lunch

Dinner

Dinner

Dinner

# split data into features and target

X = tip.drop(["tip"], axis= "columns") # droping the label variable (tip) fro
m the data

y = tip["tip"]

X.head()
total_bill
0 212550
1 272718
2 106602
3 349345
4  3470.56

y.head()
5 368,
1 259,
2 274,
3 337.
4 567.

gender
Male
Female
Femals
Female

Male

smoker

day
Thur
Sun
Thur
Sun

Sun

Mame: tip, dtype: floatéd

Since the label is continuous, this is a regression task.

One-hot encoding

As discussed in data preprocessing, we need to create a one-hot encoding for all the

categorical features in the data because some algorithms cannot work with categorical data

time

Lunch

Dinner

Dinner

Dinner

Lunch

size

1

[

o

size

b
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739
T40
741
742
743

directly. They require all input variables and output variables to be numeric. In this case, we

will create a one-hot encoding for gender, smoker, day and time by using pd.get_dummies().

pd.get_dummies(X)

total_bill size gender_Female gender_Male smoker No smoker_Yes day Fri day Mon day Sat day Sun day Thur day Tues day Wed time_Dinner time_Lunch

212550 1 0 1 1 0 0 0 0 0 1 0 0 0 1
272718 5 1 0 1 0 0 0 0 1 0 0 0 1 0
106602 4 1 ( ( 1 0 ( ( ( 1 0 ( 1 (
340345 1 1 0 1 0 0 0 0 1 0 0 0 1 0
47056 6 ( 1 ( 1 ( ( ( 1 ( 0 ( 0 1
6427 3 ( 1 1 0 ( ( 1 ( ( 0 ( 1 (
206262 2 1 0 0 1 0 0 1 0 0 0 0 1 0
247103 2 0 1 0 1 0 0 1 0 0 0 0 1 0
104238 2 0 1 1 0 0 0 1 0 0 0 0 1 0
204702 2 1 0 1 0 0 0 0 0 1 0 0 1 0

744 rows = 15 columns

We now save this result of one-hot encoding into X.

X = pd.get_dummies(X)

X.head()

total_bill size gender_Female gender_Male smoker No smoker Yes day Fri day Mon day 5at day Sun day Thur day Tues day Wed time_Dinner time_Lunch

2125.50 1 0 1 1 0 0 0 0 0 1 0 0 0 1
272718 5 1 0 1 0 0 0 0 1 0 0 0 1 0
1066.02 4 1 0 0 1 0 0 0 0 1 0 0 1 0
349345 1 1 0 1 0 0 0 0 1 0 0 0 1 0
3470.36 6 0 1 0 1 0 0 0 1 0 0 0 0 1

Split the data into training and test set

We will split our dataset (Features (X) and Label (Y)) into training and test data by using
train_test_split() function from the sklearn. The training set will be 80% while the test set

will be 20%. The random_state that is set to 1234 is for all of us to have the same set of data.

X_train, X_test, y train, y test = train_test_split(X, y, test_size = 0.2, ra
ndom_state= 1234)

We now have the pair of training data (X_train, y_train) and test data (X_test, y_test)
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3.3.3 Model Training and evaluation

We will use the training data to build the model and then use test data to make prediction

and evaluation respectively.

Linear Regression

Let’s train a linear regression model with our training data. We need to import the Linear

regression from the sklearn model

# Fitting Linear Regression to the Training set

from sklearn.linear_model import LinearRegression

We now create an object of class LinearRegression to train the model on

linearmodel = LinearRegression()

linearmodel.fit(X train, y_train)
LinearRegression()

linearmodel.fit trained the Linear regression model. The model is now ready to make

prediction for the unknown label by using only the features from the test data (X_test).

linearmodel.predict(X_test)

array([367.43848391, 284.17827121, 274.1%115018, 346.48482511,
298.857460332, 294.14453677, 257.60130848, 283.235271%4,
311.53154%982, 266.76688%8%9, 2387.58691e95, 268.12328087,
315.29857874, 379.389987 , 298.34394797, 344.98937081,
375.77887624, 345.9p1@3113, 257.77234867, 383.587862963,
391.82748847, 296.47261286, 377.37708494, 380.993273 ,
323.44463928, 325.96091299, 295.45549431, 295.88858357,
376.11352327, 394.93799767, 314.34600781, 252.39149885,
371.36736855, 329.211396%4, 389.21545846, 335.19229996,
353.93437564, 292.97091347, 329.901489%59, 302.46022122,
245.48367165, 328.12726277, 343.86442%63, 343.74524418,
389.58836497, 321.67127483, 344.84535554, 358.18847286,
328.46831958, 391.636412%2, 387.16446628, 359.47045622,
382.31824383, 386.93674845, 371.71312874, 326.74602481,
327.49791297, 345.53885245, 323.758744844, 351.67789068,
315.64524402, 313.14934587, 348.15326222, 360.45811712,
386.9117%633, 319.83745527, 3285.848330897, 352.84161322,

274.14648354, 318.37551597, 393.87672761, 329.21573682,
303.88991254])

Let’s save the

prediction result into

linearmodel_prediction. This is what the model predicted for us.
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linearmodel prediction = linearmodel.predict(X_test)
Model evaluation

Since the prediction is continuous, we can only measure how far the prediction is from the

actual values. Let’s check the error for each prediction.

y_test - linearmodel prediction

24.9681516
-127.218271
117.1185848
29.585975
-8@.857463
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The positive ones show that the prediction is higher than the actual values while the negative
ones are below the actual values. Let’s now measure this error by using the Root Mean

Squared Error (RMSE).

MSE = metrics.mean_squared_error(y_test, linearmodel_ prediction)

MSE

20201.415276948974

We now take the square root of the Mean Squared Error to get the value of the RMSE.
np.sqrt(MSE)

142.13168287524417

Therefore, the RMSE for the linear regression is 142.1316828752442.

Random Forest Model
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Let’s train a Random Forest model with our training data. We need to import the model from

the sklearn module

from sklearn.ensemble import RandomForestRegressor
randomforestmodel = RandomForestRegressor()

randomforestmodel.fit(X_train, y_train)
RandomForestRegressor()

randomforestmodel.fit() trained the Random Forest model on the training data. The model
is now ready to make prediction for the unknown label by using only the features from the

test data (X_test).

randomforestmodel prediction = randomforestmodel.predict(X_ test)

MSE = metrics.mean_squared_error(y_test, randomforestmodel prediction)
MSE

25061.411952729868

We now take the square root of the Mean Squared Error to get the value of the RMSE.
np.sqrt(MSE)

158.30796553783978

Therefore, the RMSE of Random Forest is 160.3155113080993.

Extreme Gradient Boost (XGBoost) Model

Let’s train an XGBoost model with our training data. We need to import the XGBoost model

from the xgboost module.

from xgboost import XGBRegressor
xgboostmodel = XGBRegressor(use_label encoder=False)

xgbboostmodel = xgboostmodel.fit(X train, y train)
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xgboostmodel.fit() trained the XGBoost model on the training data. The model is now ready
to make prediction for the unknown label by using only the features from the test data

(X_test).

xgbboostmodel prediction = xgboostmodel.predict(X_test)

You can call on xgbboostmodel_prediction to see the prediction

MSE = metrics.mean_squared_error(y_test, xgbboostmodel prediction)

MSE

29250.892630941566

We now take the square root of the Mean Squared Error to get the value of the RMSE.
np.sqrt(MSE)

171.0289233753799

Therefore, the RMSE for the xgbboost model is 171.0289233753799

Support Vector Machine (SVM)

Let’s train a Support Vector Machine model with our training data. We need to import the

Support Vector Machine model from the sklearn module

from sklearn.svm import SVR
SVMmodel = SVR()
SVMmodel.fit(X_train, y train)

SVR()

SVMmodel.fit() trained the Support Vector Machine on the training data. The model is now
ready to make prediction for the unknown label by using only the features from the test data

(X_test).
SVMmodel prediction = SVMmodel.predict(X_ test)

You can call on SVMmodel_prediction to see what has been predicted.
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MSE = metrics.mean_squared_error(y_test, SVMmodel prediction)

MSE

19853.340298954365

We now take the square root of the Mean Squared Error to get the value of the RMSE.
np.sqrt(MSE)

140.90188181480886

Therefore, the RMSE for the Support Vector Machine is 140.90188181480886

Decision Tree

Let’s train a Decision Tree model with our training data. We need to import the Decision Tree

model from the sklearn module

from sklearn.tree import DecisionTreeRegressor
decisiontree = DecisionTreeRegressor()

decisiontree.fit(X_train, y_train)
DecisionTreeRegressor()

decisiontree.fit() trained the Decision Tree on the training data. The model is now ready to

make prediction for the unknown label by using only the features from the test data (X_test).
decisiontree_prediction = decisiontree.predict(X_test)

You can call on decisiontree_prediction to see what has been predicted.

MSE = metrics.mean_squared_error(y_test, decisiontree_prediction)

MSE

49999.11530536912

We now take the square root of the Mean Squared Error to get the value of the RMSE.

np.sqrt(MSE)
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223.60481950389425

Therefore, the RMSE for the Decision Tree is 223.60481950389425

Models Summary

Model (s) RMSE

Linear regression 142.13
Random Forest 158.31
XGBoost 171.03
SVM 140.90
Decision Tree 223.60

Having train all the five (5) models, we can see that the best model that can accurately predict
the amount of tips that would be given for a given party in the restaurant is the model with

the lowest RMSE and that is Support Vector Machine.

Class activity 3 (Peer to peer review activity)

Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the
W @\ /k/ ( /\ ) \/ 4 discussion
,' }, } | 44 \ \( Use the following models to predict the amount of tips that would

be given for a given party in the restaurant. Your teacher has also

included how to import those models for you.

+ K Nearest Neighbor: from sklearn.neighbors import KNeighborsRegressor
+ Ridge Regression: from sklearn.linear_model import Ridge
4+ Gradient Boost Classifier: from sklearn.ensemble import GradientBoostingRegressor

Which of the three (3) model is the best in term of RMSE?
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3.4 Machine Learning Competition Platform

3.4.1 Kaggle: Your Machine Learning and Data Science Community

Kaggle is the world’s largest data science community with powerful tools and resources to

help you achieve your data science goals. You can access Kaggle via www.kaggle.com.

Q Search Competitions Datasets Notebooks Discussion Courses se* Signin Register

k Predict Malicious Websites: XGBoost + Add dataset le
lo Edt Insert Run View Help
nputidataset.cav”)

Start with more than
a blinking cursor

G REGISTER WITH GOOGLE

Try Now

Kaggle enables data scientists and other developers to engage in running machine learning
contests, write and share code, and to host datasets. The types of data science problems
posted on Kaggle can be anything from attempting to predict cancer occurrence by
examining patient records to analyzing sentiment to evoke by movie reviews and how this

affects audience reaction.
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Kaggle Registration

kaggle

Sign In Reagister

G Register with Google
B Register with your email

Have an account? Sign in.

After a successful registration, you can now compete on different competitions on Kaggle.

+

©

C Y @& kaggle.com/competitions t *an 0 m W B L0 ® T %R ‘ i

[ A Guide to Machine...

kaggle

Home
Compete
Data

Code
Communities
Courses

More

Recently Viewed

k
]
[ |
-

)

3.4.2 Titanic Competition

Titanic - Machine Lear...
Stroke Prediction Data...
HR Analytics

WIDS Datathon 2021

View Active Events

Other bookmarks

Q, search w

Competitions

Grow your data science skills by competing in our exciting competitions. Find help in the
documentation or learn about InClass competitions.

+ Host a Competition Your Work

Your Competitions

Active Closed Pinned Hosted

Live competitions you've joined go here - why don't you enter one to get started

All Competitions
Active (Not Entered)  Completed  InClass All Categories ¥ Default Sort~

HuBMAP - Hacking the Kidney

.I dentify glomeruliin human kidney tissue images §60.000
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Overview tab

This contains a general introduction to the competition and in some cases, a case study to

the problem you are trying to solve is described

& C (Y @ kaggle.com/c/titanic/overview/description ¥ ® &0 0 ¢« - ¥ ® g ® " » Q :
[ A Guide to Machine. Other bo
= qql Q Search 'i,w
® Home Titanic - Machine Learning from Disaster ..
@  Compete | Start here! Predict survival on the Titanic and get familiar with ML basics
@ Data Kaggle - 24,498 teams - Ongoing

<> Code
Overview | Data Code Discussion Leaderboard Rules Join Competition

@ Communities —

& Courses
Vv More
pescabion §) & Ahoy, welcome to Kaggle! You're in the right place.
Recently Viewed Evaluation This is the legendary Tit
& Titanic - Machine Lear... Frequently Asked competitions and familiarize yours
. Heart Disease Predicti Questions The competition is simple: use machine learning to create a model that predicts which passengers
survived the Titanic shig

. Stroke Prediction Data...

xplore more details. On

unt and gain acc

B HR Analytics
u through

Data

[t contains information about the dataset and a detailed explanation of each column in the

dataset
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(;/) Getting Started Prediction Competition

Titanic - Machine Learnir;g from Disaster . .

Start here! Predict survival on the Titanic and get familiar with ML basics

Kaggle - 24,498 teams - Ongoing

Overview ' Data Code Discussion Leaderboard Rules Join Competition

Overview
The data has been split into two groups:

e training set (train.csv)

o test set (test.csv

uld be to build your ma

The training set shc chine learning models. For the training

1lso use feature

“ground truth”) for each passenger. Your model will be based on "features” like passengers’ ge r and class. You ca

engineering to create new features.

Leaderboard

This display the position of each participant relative to each other based on what they

submitted
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Titanic - Machine Learning from Disaster . .
Start here! Predict survival on the Titanic and get familiar with ML basics

Kaggle 24,498 teams - Ongoing

Overview Data Code Discussion | Leaderboard @ Rules Join Competition

Public Leaderboard Private Leaderboard

& Raw Data C' Refresh

1.00000 2

Jizhou Wei

1.00000 19

2 JaesikYang

Q
3 Borkapanda . @ 1.00000 3

Rules

This tab explains the rules of the competition. Always remember to read this section
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@) Getting Started Prediction Competition

Titanic - Machine Learnir;g from Disaster .

Start here! Predict survival on the Titanic and get familiar with ML basics

Kaggle - 24,736 teams - Ongoing

Overview Data Code Discussion Leaderboard | Rules' Team My Submissions Submit Predictions

You have accepted the rules for this competition. Good luck!

One account per participant

You cannot sign up to Kaggle from multiple accounts and therefore you cannot submit from multiple accounts.

Team

Some competitions allow for team submission. This means that you can form a team to work

with in that competition
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. Kaggle - 24,736 teams - Ongoing

Overview Data Code Discussion Leaderboard Rules @ Team My Submissions Submit Predictions

Team Name

Ogundepo Ezekiel Adebayc

Team Members

iﬁ; Ogundepo Ezekiel Adebayo Leader

3.4.3 Other Machine Learning Competition Platforms
Other machine learning competitions are also available and that include:

ZiND:

Zindi Africa connects organisations with thriving African data science community to solve
the world’s most pressing challenges using machine learning and Al Visit

https://zindi.africa/competitions for competition on Zindi.

DRIVENBAIA

DrivenData brings cutting-edge practices in data science and crowdsourcing to some of the

world's biggest social challenges and the organizations taking them on. They host online
challenges, usually lasting 2-3 months, where a global community of data scientists competes

to come up with the best statistical model for difficult predictive problems that make a


https://zindi.africa/competitions

4 ; CS3: Computer Science Level 3

difference. Visit https://www.drivendata.org/competitions for competition on

DRIVENDATA.

Class activity 4

You will compete with others on the Titanic challenge via

https://www.kaggle.com/c/titanic.

+ Read about the competition instructions and download the data
+ Build a predictive model using the train data and predict those that are likely to survive or not
using the test data.

#+ Submit your prediction and note your accuracy on Kaggle

Additional resources

For more resources in this section please consider the following:

% https://datatofish.com/multiple-linear-regression-python/

+ https://www.w3schools.com/python/python ml getting started.asp

#+ https://machinelearningmastery.com/a-gentle-introduction-to-scikit-learn-a-python-machine-

learning-library/

Summary of Study Unit 3

In this study unit, you have learnt that:

1. Scikit-learn module can be used to train both regression and classification models
2. Before training a model, you to carry out some data processing such as separating
features from the label, create one-hot encoding for categorical features, and split the

data to training and test set



https://www.drivendata.org/competitions/
https://datatofish.com/multiple-linear-regression-python/
https://www.w3schools.com/python/python_ml_getting_started.asp
https://machinelearningmastery.com/a-gentle-introduction-to-scikit-learn-a-python-machine-learning-library/
https://machinelearningmastery.com/a-gentle-introduction-to-scikit-learn-a-python-machine-learning-library/
https://www.kaggle.com/c/titanic
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CS3: Computer Science Level 3

3. A training data will contain at most 80% of the original data while the test set will
take the remainder

4. You will train the models with your training data and evaluate the performance of
those models with the test set.

5. You can access the performance of your trained models with different evaluation
metrics

6. You can compete on different machine learning competitions on Kaggle or Zindi



