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Study Unit 

3 

 Training and Testing Machine 

Learning Models 

Training and Testing 

Machine Learning 

Models Outline  

 Scikit-learn module 

 Data preprocessing 

 Training and models 

evaluation 

 Competing on Kaggle 

Study Unit Duration 

This Study Session requires a 

minimum of 3 hours’ formal 

study time.  

You may spend an additional 

2-3 hours on revision. 

Preamble  

Scikit-learn is a library in Python that provides many supervised learning 

and unsupervised algorithms. It is built upon some of the packages you 

already familiar with, like NumPy, Pandas, and Matplotlib. With Scikit-

learn module, you can train different machine learning models such as 

regression and classification and check their performance using any of the 

metrics discussed in unit 2. 

Learning Outcomes of Study Unit 3         

Upon completion of this study unit, you should be able to:     

3.1   Train and evaluate classification models for predicting unknown 

categorical label and Solving problem using exploratory data analysis 

techniques.   

3.2   Train and evaluate Logistic regression models for predicting 

unknown continuous label 

3.3   Train and evaluate Logistic regression models for predicting 

unknown continuous label and how to select best  model among the 

trained models 

3.4 Compete on Kaggle for machine learning and data science 

competition 
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Terminologies, Acronyms and their Meaning  

AI Artificial Intelligence 

ML Machine Learning 

RL Reinforcement Learning 

DL Deep learning 

EDA Exploratory Data Analysis 

np NumPy 

sns Seaborn 

pd Pandas 

TP True Positive 

FP False Positive 

FN False Negative 

TN True Negative 

RMSE Root Mean Squared Error 

3.1 Introduction to machine learning module: The Scikit-learn 

The functionality that scikit-learn provides include: 

 Regression 

 Classification 

 Clustering 

 Model selection 

 Preprocessing 

Installation 

The easiest way to install scikit-learn is by running the following on your terminal: 

pip install -U scikit-learn 

or 

conda install -c conda-forge scikit-learn 

Importing Scikit-learn module for classification models 

Some of the classification models that can be imported from sklearn library includes: 
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 Logistic Regression: from sklearn.linear_model import LogisticRegression 

 K Nearest Neighbor: from sklearn.neighbors import KNeighborsClassifier 

 Support Vector Machine: from sklearn.svm import SVC 

 Decision Trees Classifier: from sklearn.tree import DecisionTreeRegressor  

 Random Forest Classifier: from sklearn.ensemble import RandomForestClassifier 

 Gradient Boost Classifier: from sklearn.ensemble import 
GradientBoostingClassifier 

Importing Scikit-learn module for regression models 

Some of the regression models that can be imported from sklearn library includes: 

 Linear Regression: from sklearn.linear_model import LinearRegression 

 K Nearest Neighbor Regressor: from sklearn.neighbors import 
KNeighborsRegressor 

 Support Vector Machine: from sklearn.svm import SVR 

 Decision Trees Regressor: from sklearn.tree import DecisionTreeRegressor  

 Random Forest Regressor: from sklearn.ensemble import 
RandomForestRegressor 

 Gradient Boost Regressor: from sklearn.ensemble import 
GradientBoostingRegressor 

3.1.1 Classification Machine Learning Model with Health Provider dataset in Ethiopia 

Problem statement 

You work as an analyst in the marketing department of a company that provides various 

medical insurance in Ethiopia. Your manager is unhappy with the low sales volume of a 

specific kind of insurance. The data engineer provides you with a sample dataset for those 

that visit the company website for medical insurance. 

The dataset contains the following columns: 

 User ID 

 Gender 

 Age 
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 Salary 

 Purchase: An indicator of whether the users purchased (1) or not-purchased (0) a 

particular product. 

We plan to use the following classifier to predict whether a person that visits the insurance 

company will buy or not. 

 Logistic regression 

 Random forest 

 Naive Bayes 

 XGBoost 

 Support Vector Machine (SVM) 

Import Python modules 

We need to import some packages that will enable us to explore the data and build machine 

learning models 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

insurance = pd.read_csv("datasets/Medical_insurance_dataset.csv") 

insurance.head(5) 
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insurance.shape 

(400, 5) 

We have 5 variables and 400 instances of those that want to buy medical insurance or not in 

this data. The User ID is a random number generated for every customer to comes to the 

company for medical insurance. Therefore, it is not useful in predicting whether the person 

will buy medical insurance or not. We will therefore, remove that variable from the data. 

insurance.drop(["User ID"], axis= "columns", inplace = True) 

insurance.head() 

 

We want to transform or recode the label Purchased to have 1 for those that bought the 

insurance and 0 for those that did not purchased the insurance. This will transform the 

output variable (label) to be numeric. 

insurance["Purchased"] = insurance["Purchased"].apply(lambda x: 1 if x == "pu

rchased" else 0) 

insurance.head() 
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Now we have 3 features that include gender, age, and estimated salary while purchased 

is the label in this data. Since the label has just two classes or categories (purchased (1) and 

not-purchased (0)), this is a binary classification problem. 

3.1.2 Exploratory Data Analysis 

Fact generated by data exploratory will help us to know those features that can predict 

whether a person will purchase medical insurance or not. Let us start by visualizing the 

proportion of those that want to buy medical insurance or not. 

sns.countplot(x = "Purchased", data = insurance); 

 

As you can see, majority of those that visit the medical insurance company did not want to 

buy the insurance. This is an example of class imbalanced. That is, there is no equal 

proportion of those that will buy or not. 

sns.countplot(x = "Gender", data = insurance); 
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The proportion of males are almost the same as females. 

sns.countplot(x = "Gender", hue = "Purchased", data = insurance) 

 

It seems that more females would purchase the insurance when compare with males. 
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sns.boxplot(x = "Purchased", y = "Age", data = insurance); 

 

From the look of things, other people purchased the insurance compared with the younger 

people. 

sns.boxplot(x = "Purchased", y = "EstimatedSalary", data = insurance); 
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People that earned higher salary purchased the insurance while those that earned low did 

not purchase the insurance. Of course, it is expected you purchase a medical insurance when 

you have money. 

Importing machine learning models 

 
from sklearn import metrics # For model evaluation 

from sklearn.model_selection import train_test_split # To divide the data int

o training and test set 

3.1.3 Data Preprocessing 
 

Separating features and the label from the data 

Now is the time to build machine learning models for the task of predicting whether the 

customers will buy medical insurance or not. Therefore, we shall separate the set of features 

(X) from the label (Y). 

# split data into features and target 

X = insurance.drop(["Purchased"], axis= "columns") # dropping the label varia

ble (Purchased) from the data 
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y = insurance["Purchased"] 

X.head() 

 

y.head() 

 

One-hot encoding 

As discussed in data preprocessing, we need to create a one-hot encoding for all the 

categorical features in the data because some algorithms cannot work with categorical data 

directly. They require all input variables and output variables to be numeric. In this case, we 

will create a one-hot encoding for the gender feature by using pd.get_dummies(). 

pd.get_dummies(insurance["Gender"]) 
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In fact, pd.get_dummies( ) is very powerful to actually locate the categorical features and 

create a one-hot encoding for them. For example: 

pd.get_dummies(X) 

 

We now save this one-hot encoding result into X. 
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X = pd.get_dummies(X) 

X.head() 

 

Split the data into training and test set 

As discussed in A, We will split our dataset (Features (X) and Label (Y)) into training and test 

data by using train_test_split( ) function from the sklearn. The training set will be 80% while 

the test set will be 20%. The random_state that is set to 1234 is for all of us to have the same 

set of data. It can be set to any number of choices. 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, ra

ndom_state= 1234) 

We now have the pair of training data (X_train, y_train) and test data (X_test, y_test) 

3.2 Model training and evaluation 

We will use the training data to build the model and then use test data to make prediction 

and evaluation respectively. 

3.2.1 Logistic regression 

Let’s train a Logistic regression model with our training data. We need to import the Logistic 

regression from the sklearn model 

# Fitting Logistic Regression to the Training set 

from sklearn.linear_model import LogisticRegression 

We now create an object of class LogisticRegression() to train the model on 
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logisticmodel = LogisticRegression() 

logisticmodel.fit(X_train, y_train) 

LogisticRegression() 

logisticmodel.fit trained the Logistic regression model. The model is now ready to make 

prediction for the unknown label by using only the features from the test data (X_test). 

logisticmodel.predict(X_test) 

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0]) 

Let’s save the prediction result into logistic_prediction. This is what the model predicted 

for us. 

logistic_prediction = logisticmodel.predict(X_test) 

Model evaluation 

Since we know the true label in the test set (i.e. y_test), we can compare this prediction with 

it, hence evaluate the logistic model. I have created a function that will help you visualize a 

confusion matrix for the logistic model and you can call on it henceforth to check the 

performance of any model. 

def ConfusionMatrix(ytest, ypred, label = ["Negative", "Positive"]): 

    "A beautiful confusion matrix function to check the model performance" 

    from sklearn.metrics import confusion_matrix 

    import seaborn as sns 

    cm = confusion_matrix(ytest, ypred) 

    plt.figure(figsize=(7, 5)) 

    sns.heatmap(cm, annot = True, cbar = False, fmt = 'd', cmap = 'YlGn') 

    plt.xlabel('Predicted', fontsize = 13) 

    plt.xticks([0.5, 1.5], label) 

    plt.yticks([0.5, 1.5], label) 
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    plt.ylabel('Truth', fontsize = 13) 

    plt.title('A confusion matrix'); 

By using the ConfusionMatrix( ) function, we have: 

ConfusionMatrix(y_test, logistic_prediction, label= ["not-purchased", "purcha

sed"]) 

 

Interpretation of the logistic regression model evaluation performance 

 There are 54 True Negatives (TN): predicting that the customer will not buy the 

insurance and truly the customer did not buy the insurance. 

 There are 26 False Negative (FN): predicting that the customer will not buy the 

insurance and the customer actually bought the insurance. 

Evaluation metric 

We will use some functions such accuracy and F1-score from metrics module. 

We can check the accuracy by using: 
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metrics.accuracy_score(y_test, logistic_prediction) 

0.675 

The accuracy of the model is 66.25%. We cannot trust this accuracy since the data is class 

imbalanced. Therefore, we are going to use F1 score instead. 

metrics.f1_score(y_test, logistic_prediction) 

0.0 

As you can see from the confusion matrix and the result of F1 score, this model is not efficient 

to predict whether or not a customer will buy the insurance. 

Naive Bayes 

Let’s train a Naive Bayes classifier with our training data. We need to import the model 

from the sklearn model 

from sklearn.naive_bayes import GaussianNB 

naivemodel = GaussianNB() 

naivemodel.fit(X_train, y_train) 

GaussianNB() 

naivemodel.fit() trained the Naive Bayes model. The model is now ready to make prediction 

for the unknown label by using only the features from the test data (X_test). 

naivemodel_prediction = naivemodel.predict(X_test) 

You can call one naivemodel_predictionto see the prediction 

naivemodel_prediction 

array([0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 

0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0]) 

By using the ConfusionMatrix() function, we can see how the model performed: 
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ConfusionMatrix(y_test, naivemodel_prediction, label= ["not-purchased", "purc

hased"]) 

 

Interpretation of the Naive model evaluation performance 

 There are 49 True Negatives (TN): predicting that the customer will not buy the 

insurance and truly the customer did not buy the insurance. 

 There are 19 True Positives (TP): predicting that the customer will buy the insurance 

and truly the customer did buy the insurance. 

 There are 7 False Negatives (FN): predicting that the customer will not buy the 

insurance and the customer actually bought the insurance. 

 There are 5 False Positives (FN): predicting that the customer will buy the insurance 

and the customer did not buy the insurance. 

Evaluation metrics 

We are going to check the accuracy and F1 score of them model. 

We can check the accuracy by using: 



CS3: Computer Science Level 3 

 

metrics.accuracy_score(y_test, naivemodel_prediction) 

0.85 

The accuracy of the model is 85% 

We can check the F1 score by using: 

metrics.f1_score(y_test, naivemodel_prediction) 

0.76 

The F1 score of the model is 76% 

As you can see, this model seems good in predicting whether a patient will buy insurance 

or not. 

3.2.2 Random Forest Model 

Let’s train a Random Forest model with our training data. We need to import the Random 

Forest model from the sklearn module 

from sklearn.ensemble import RandomForestClassifier 

randomforestmodel = RandomForestClassifier() 

randomforestmodel.fit(X_train, y_train) 

RandomForestClassifier() 

randomforestmodel.fit() trained the Random Forest model on the training data. The model 

is now ready to make prediction for the unknown label by using only the features from the 

test data (X_test). 

randomforestmodel_prediction = randomforestmodel.predict(X_test) 

You can call one randomforestmodel_prediction to see the prediction 

randomforestmodel_prediction 
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array([0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 

0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0]) 

By using the ConfusionMatrix() function, we can see how the model performed: 

ConfusionMatrix(y_test, randomforestmodel_prediction, label= ["not-purchased"

, "purchased"]) 

 

Interpretation of the Random Forest model evaluation performance 

 There are 45 True Negatives (TN): predicting that the customer will not buy the 

insurance and truly the customer did not buy the insurance. 

 There are 22 True Positives (TP): predicting that the customer will buy the insurance 

and truly the customer did buy the insurance. 

 There are 4 False Negatives (FN): predicting that the customer will not buy the 

insurance and the customer actually bought the insurance. 
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 There are 9 False Positives (FN): predicting that the customer will buy the insurance 

and the customer did not buy the insurance. 

Evaluation metrics 

We are going to check the accuracy and F1 score of them model. 

We can check the accuracy by using: 

metrics.accuracy_score(y_test, randomforestmodel_prediction) 

0.8375 

The accuracy of the model is 83.75% 

We can check the F1 score by using: 

metrics.f1_score(y_test, randomforestmodel_prediction) 

0.7719298245614036 

The F1 score of the model is 77.19% 

As you can see, this model seems good in predicting whether a patient will buy insurance 

or not. 

3.2.3 Extreme Gradient Boost (XGBoost) Model 

Let’s train an XGBoost model with our training data. We need to import the XGBoost model 

from the sklearn module but before we do that, we need to install the module because it is 

not available in the sklearn. 

How to install XGBoost 

Go to your termina and type pip install xgboost 

pip install xgboost 
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After installation, you can now import it as follows: 

from xgboost import XGBClassifier 

xgboostmodel = XGBClassifier(use_label_encoder=False) 

xgbboostmodel = xgboostmodel.fit(X_train, y_train) 

xgboostmodel.fit() trained the XGBoost model on the training data. The model is now ready 

to make prediction for the unknown label by using only the features from the test data 

(X_test). 

xgbboostmodel_prediction = xgboostmodel.predict(X_test) 

You can call on xgbboostmodel_prediction to see the prediction 

xgbboostmodel_prediction 

array([0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0]) 

By using the ConfusionMatrix( ) function, we can see how the model performed: 

ConfusionMatrix(y_test, xgbboostmodel_prediction, label= ["not-purchased", "p

urchased"]) 
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Interpretation of the XGBoost model evaluation performance 

 There are 46 True Negatives (TN): predicting that the customer will not buy the 

insurance and truly the customer did not buy the insurance. 

 There are 18 True Positives (TP): predicting that the customer will buy the insurance 

and truly the customer did buy the insurance. 

 There are 8 False Negatives (FN): predicting that the customer will not buy the 

insurance and the customer actually bought the insurance. 

 There are 8 False Positives (FN): predicting that the customer will buy the insurance 

and the customer did not buy the insurance. 

Evaluation metrics 

We are going to check the accuracy and F1 score of the model. 

We can check the accuracy by using: 

metrics.accuracy_score(y_test, xgbboostmodel_prediction) 

0.8 
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The accuracy of the model is 80% 

We can check the F1 score by using: 

metrics.f1_score(y_test, xgbboostmodel_prediction) 

0.6923076923076923 

The F1 score of the model is 69.23% 

As you can see, this model seems good in predicting whether a patient will buy insurance or 

not. 

3.2.4 Support Vector Machine (SVM) 

Let’s train a Support Vector Machine model with our training data. We need to import the 

Support Vector Machine model from the sklearn module 

from sklearn.svm import SVC 

SVMmodel = SVC() 

SVMmodel.fit(X_train, y_train) 

SVC() 

SVMmodel.fit() trained the Support Vector Machine on the training data. The model is now 

ready to make prediction for the unknown label by using only the features from the test data 

(X_test). 

SVMmodel_prediction = SVMmodel.predict(X_test) 

You can call on SVMmodel_prediction to see what has been predicted. 

SVMmodel_prediction 

array([0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 

0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0]) 

By using the ConfusionMatrix( ) function, we can see how the model performed: 
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ConfusionMatrix(y_test, SVMmodel_prediction, label= ["not-purchased", "purcha

sed"]) 

 

Interpretation of the Random Forest model evaluation performance 

 There are 51 True Negatives (TN): predicting that the customer will not buy the 

insurance and truly the customer did not buy the insurance. 

 There are 13 True Positives (TP): predicting that the customer will buy the insurance 

and truly the customer did buy the insurance. 

 There are 13 False Negatives (FN): predicting that the customer will not buy the 

insurance and the customer actually bought the insurance. 

 There are 3 False Positives (FN): predicting that the customer will buy the insurance 

and the customer did not buy the insurance. 

Evaluation metrics 

We are going to check the accuracy and F1 score of the model. 

We can check the accuracy by using: 
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metrics.accuracy_score(y_test, SVMmodel_prediction) 

0.8 

The accuracy of the model is 80% 

We can check the F1 score by using: 

metrics.f1_score(y_test, SVMmodel_prediction) 

0.6190476190476191 

The F1 score of the model is 61.9% 

As you can see, this model seems good in predicting whether a patient will buy insurance or 

not. 

Models Summary 

Model (s) Accuracy (%) F1-score (%) 

Logistic regression 67.5 0 

Naive Bayes 85 76 

Random Forest 83.75 77.19 

XGBoost 80 69.23 

SVM 80 61.9 

Having train all the five (5) models, we can see that the best model that can accurately predict 

whether a customer will buy the insurance or not is the Random Forest Model. 
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Class activity 1 (Peer to peer review activity) 

 

Class activity 2  

                              Peer to Peer Interaction 

Visit the LMS, locate forum activity and participate in the discussion 

Use the following models to predict whether a customer will buy 

insurance or not. Your teacher has also included how to import 

those models for you. 

 K Nearest Neighbor: from sklearn.neighbors import 
KNeighborsClassifier 

 Decision Trees Classifier: from sklearn.tree import 
DecisionTreeClassifier 

 Gradient Boost Classifier: from sklearn.ensemble import 
GradientBoostingClassifier 

Which of the three (3) model is the best in term of the F1 score? 

The employee retention dataset (HR_comma_sep.csv) from 

https://www.kaggle.com/giripujar/hr-analytics can be seen in the activity 

directory. The dataset is from Human resources department of one big company 

in Somalia. The HR want to determine what is making the staff to leave the 

company and they have tasked you, a data scientist, to build a model to predict 

who is like to leave the company. The label in the dataset is left (retention): 

1. Do some exploratory data analysis to figure out which variables have direct and clear impact on 

employee retention (i.e. whether they leave the company or continue to work) 

2. Plot bar charts showing impact of employee salaries on retention 

3. Plot bar charts showing correlation between department and employee retention 

4. Build at least three classification models for the dataset 

5. Measure the accuracy of those models 

https://www.kaggle.com/giripujar/hr-analytics
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3.3 Regression Machine Learning Model with Kenya restaurant 

dataset 

The objective of the regression task is to predict the amount of tip (gratuity in Kenya Shilling) 

given to a food server based on total_bill, gender, smoker (whether they smoke in the party 

or not), day(day of the week for the party), time(time of the day whether for lunch or dinner), 

and size(size of the party). 

Label: The label for this problem is tip. 

Features: There are 6 features and they include total bill, gender, smoker, day, time, and 

size. 

We plan to use the following regression models (regressor) to predict the amount of tips 

that will be given during a particular party in the restaurant: 

 Ordinary Least Square (OLS) 

 Support Vector Machine (SVM) 

 Extreme Gradient Boosting (XGBoost) 

 Decision Tree 

 Random Forest 

3.3.1 Import Python modules 

We need to import some packages that will enable us to explore the data and build machine 

learning models 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

6. Which model is the best among the models trained? 
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import seaborn as sns 

from pandas_profiling import ProfileReport 

 

 

tip = pd.read_csv("datasets/tips.csv") 

tip.head(10) 

 

tip.shape 

(744, 7) 

We can use pandas_profiling to do some data exploration before training our models 

tip.profile_report() 
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We can also explore the relationship between the amount of tip and categorical variables 

tip vs. gender 

sns.boxplot(x = "gender", y = "tip", data = tip) 

plt.ylabel("Amount of tip"); 
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The amount of tips given by both gender is almost the same although there was an extreme 

amount of tip given by some men. 

tip vs. smoker 

sns.boxplot(x = "smoker", y = "tip", data = tip) 

plt.ylabel("Amount of tip"); 
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Smoker and non-smoker gave almost amount of tip. 

tip vs. time 

sns.boxplot(x = "time", y = "tip", data = tip) 

plt.ylabel("Amount of tip"); 
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Smoker and non-smoker gave almost amount of tip. 

3.3.2 Model building 

After getting some insight about the data, we can now prepare the data for machine learning 

modelling 

Importing machine learning models 

 
from sklearn import metrics # For model evaluation 

from sklearn.model_selection import train_test_split # To divide the data int

o training and test set 

Data Preprocessing 

Separating features and the label from the data 

Now is the time to build machine learning models for the task of predicting the amount of tip 

that would be given for any party in the restaurant. Therefore, we shall separate the set of 

features (X) from the label (Y). 

tip.head(4) 
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# split data into features and target 

X = tip.drop(["tip"], axis= "columns") # droping the label variable (tip) fro

m the data 

y = tip["tip"] 

X.head() 

 

y.head() 

 

Since the label is continuous, this is a regression task. 

One-hot encoding 

As discussed in data preprocessing,, we need to create a one-hot encoding for all the 

categorical features in the data because some algorithms cannot work with categorical data 
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directly. They require all input variables and output variables to be numeric. In this case, we 

will create a one-hot encoding for gender, smoker, day and time by using pd.get_dummies(). 

pd.get_dummies(X) 

We now save this result of one-hot encoding into X. 

X = pd.get_dummies(X) 

X.head() 

Split the data into training and test set 

We will split our dataset (Features (X) and Label (Y)) into training and test data by using 

train_test_split() function from the sklearn. The training set will be 80% while the test set 

will be 20%. The random_state that is set to 1234 is for all of us to have the same set of data. 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, ra

ndom_state= 1234) 

We now have the pair of training data (X_train, y_train) and test data (X_test, y_test) 
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3.3.3 Model Training and evaluation 

We will use the training data to build the model and then use test data to make prediction 

and evaluation respectively. 

Linear Regression 

Let’s train a linear regression model with our training data. We need to import the Linear 

regression from the sklearn model 

# Fitting Linear Regression to the Training set 

from sklearn.linear_model import LinearRegression 

We now create an object of class LinearRegression to train the model on 

linearmodel = LinearRegression() 

linearmodel.fit(X_train, y_train) 

LinearRegression() 

linearmodel.fit trained the Linear regression model. The model is now ready to make 

prediction for the unknown label by using only the features from the test data (X_test). 

linearmodel.predict(X_test) 

 

 

 

 

Let’s save the 

prediction result into 

linearmodel_prediction. This is what the model predicted for us. 
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linearmodel_prediction = linearmodel.predict(X_test) 

Model evaluation 

Since the prediction is continuous, we can only measure how far the prediction is from the 

actual values. Let’s check the error for each prediction. 

y_test - linearmodel_prediction  

 

The positive ones show that the prediction is higher than the actual values while the negative 

ones are below the actual values. Let’s now measure this error by using the Root Mean 

Squared Error (RMSE). 

MSE = metrics.mean_squared_error(y_test, linearmodel_prediction) 

MSE 

20201.415276948974 

We now take the square root of the Mean Squared Error to get the value of the RMSE. 

np.sqrt(MSE) 

142.13168287524417 

Therefore, the RMSE for the linear regression is 142.1316828752442. 

Random Forest Model 
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Let’s train a Random Forest model with our training data. We need to import the model from 

the sklearn module 

from sklearn.ensemble import RandomForestRegressor 

randomforestmodel = RandomForestRegressor() 

randomforestmodel.fit(X_train, y_train) 

RandomForestRegressor() 

randomforestmodel.fit() trained the Random Forest model on the training data. The model 

is now ready to make prediction for the unknown label by using only the features from the 

test data (X_test). 

randomforestmodel_prediction = randomforestmodel.predict(X_test) 

MSE = metrics.mean_squared_error(y_test, randomforestmodel_prediction) 

MSE 

25061.411952729868 

We now take the square root of the Mean Squared Error to get the value of the RMSE. 

np.sqrt(MSE) 

158.30796553783978 

Therefore, the RMSE of Random Forest is 160.3155113080993. 

Extreme Gradient Boost (XGBoost) Model 

Let’s train an XGBoost model with our training data. We need to import the XGBoost model 

from the xgboost module. 

from xgboost import XGBRegressor 

xgboostmodel = XGBRegressor(use_label_encoder=False) 

xgbboostmodel = xgboostmodel.fit(X_train, y_train) 
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xgboostmodel.fit() trained the XGBoost model on the training data. The model is now ready 

to make prediction for the unknown label by using only the features from the test data 

(X_test). 

xgbboostmodel_prediction = xgboostmodel.predict(X_test) 

You can call on xgbboostmodel_prediction to see the prediction 

MSE = metrics.mean_squared_error(y_test, xgbboostmodel_prediction) 

MSE 

29250.892630941566 

We now take the square root of the Mean Squared Error to get the value of the RMSE. 

np.sqrt(MSE) 

171.0289233753799 

Therefore, the RMSE for the xgbboost model is 171.0289233753799 

Support Vector Machine (SVM) 

Let’s train a Support Vector Machine model with our training data. We need to import the 

Support Vector Machine model from the sklearn module 

from sklearn.svm import SVR 

SVMmodel = SVR() 

SVMmodel.fit(X_train, y_train) 

SVR() 

SVMmodel.fit() trained the Support Vector Machine on the training data. The model is now 

ready to make prediction for the unknown label by using only the features from the test data 

(X_test). 

SVMmodel_prediction = SVMmodel.predict(X_test) 

You can call on SVMmodel_prediction to see what has been predicted. 
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MSE = metrics.mean_squared_error(y_test, SVMmodel_prediction) 

MSE 

19853.340298954365 

We now take the square root of the Mean Squared Error to get the value of the RMSE. 

np.sqrt(MSE) 

140.90188181480886 

Therefore, the RMSE for the Support Vector Machine is 140.90188181480886 

Decision Tree 

Let’s train a Decision Tree model with our training data. We need to import the Decision Tree 

model from the sklearn module 

from sklearn.tree import DecisionTreeRegressor 

decisiontree =  DecisionTreeRegressor() 

decisiontree.fit(X_train, y_train) 

DecisionTreeRegressor() 

decisiontree.fit() trained the Decision Tree on the training data. The model is now ready to 

make prediction for the unknown label by using only the features from the test data (X_test). 

decisiontree_prediction = decisiontree.predict(X_test) 

You can call on decisiontree_prediction to see what has been predicted. 

MSE = metrics.mean_squared_error(y_test, decisiontree_prediction) 

MSE 

49999.11530536912 

We now take the square root of the Mean Squared Error to get the value of the RMSE. 

np.sqrt(MSE) 
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223.60481950389425 

Therefore, the RMSE for the Decision Tree is 223.60481950389425 

Models Summary 

Model (s) RMSE 

Linear regression 142.13 

Random Forest 158.31 

XGBoost 171.03 

SVM 140.90 

Decision Tree 223.60 

Having train all the five (5) models, we can see that the best model that can accurately predict 

the amount of tips that would be given for a given party in the restaurant is the model with 

the lowest RMSE and that is Support Vector Machine. 

Class activity 3 (Peer to peer review activity) 

 

Peer to Peer Interaction 

Visit the LMS, locate forum activity and participate in the 

discussion 

Use the following models to predict the amount of tips that would 

be given for a given party in the restaurant. Your teacher has also 

included how to import those models for you. 

 K Nearest Neighbor: from sklearn.neighbors import KNeighborsRegressor 

 Ridge Regression: from sklearn.linear_model import Ridge 

 Gradient Boost Classifier: from sklearn.ensemble import GradientBoostingRegressor 

Which of the three (3) model is the best in term of RMSE? 
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3.4 Machine Learning Competition Platform 

3.4.1 Kaggle: Your Machine Learning and Data Science Community 

Kaggle is the world’s largest data science community with powerful tools and resources to 

help you achieve your data science goals. You can access Kaggle via www.kaggle.com. 

 

Kaggle enables data scientists and other developers to engage in running machine learning 

contests, write and share code, and to host datasets. The types of data science problems 

posted on Kaggle can be anything from attempting to predict cancer occurrence by 

examining patient records to analyzing sentiment to evoke by movie reviews and how this 

affects audience reaction. 
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Kaggle Registration 

 

 

 

 

 

 

 

 

After a successful registration, you can now compete on different competitions on Kaggle. 

 

3.4.2 Titanic Competition 
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Overview tab 

This contains a general introduction to the competition and in some cases, a case study to 

the problem you are trying to solve is described 

 

Data 

It contains information about the dataset and a detailed explanation of each column in the 

dataset 
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Leaderboard 

This display the position of each participant relative to each other based on what they 

submitted 
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Rules 

This tab explains the rules of the competition. Always remember to read this section 
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Team 

Some competitions allow for team submission. This means that you can form a team to work 

with in that competition 
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3.4.3 Other Machine Learning Competition Platforms 

Other machine learning competitions are also available and that include: 

 

Zindi  
 
 

Zindi Africa connects organisations with thriving African data science community to solve 

the world’s most pressing challenges using machine learning and AI. Visit 

https://zindi.africa/competitions for competition on Zindi. 

 

DRIVEN DATA 
 

DrivenData brings cutting-edge practices in data science and crowdsourcing to some of the 

world's biggest social challenges and the organizations taking them on. They host online 

challenges, usually lasting 2-3 months, where a global community of data scientists competes 

to come up with the best statistical model for difficult predictive problems that make a 

https://zindi.africa/competitions
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difference. Visit https://www.drivendata.org/competitions for competition on 

DRIVENDATA. 

Class activity 4 

 
 

 

Additional resources  

For more resources in this section please consider the following: 

 https://datatofish.com/multiple-linear-regression-python/  

 https://www.w3schools.com/python/python_ml_getting_started.asp  

 https://machinelearningmastery.com/a-gentle-introduction-to-scikit-learn-a-python-machine-

learning-library/  

 
 
 
 

Summary of Study Unit 3 
 

In this study unit, you have learnt that:  

1. Scikit-learn module can be used to train both regression and classification models 

2. Before training a model, you to carry out some data processing such as separating 

features from the label, create one-hot encoding for categorical features, and split the 

data to training and test set 

  You will compete with others on the Titanic challenge via 

https://www.kaggle.com/c/titanic. 

 

 Read about the competition instructions and download the data 

 Build a predictive model using the train data and predict those that are likely to survive or not 

using the test data. 

 Submit your prediction and note your accuracy on Kaggle 

https://www.drivendata.org/competitions/
https://datatofish.com/multiple-linear-regression-python/
https://www.w3schools.com/python/python_ml_getting_started.asp
https://machinelearningmastery.com/a-gentle-introduction-to-scikit-learn-a-python-machine-learning-library/
https://machinelearningmastery.com/a-gentle-introduction-to-scikit-learn-a-python-machine-learning-library/
https://www.kaggle.com/c/titanic
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3. A training data will contain at most 80% of the original data while the test set will 

take the remainder 

4. You will train the models with your training data and evaluate the performance of 

those models with the test set. 

5. You can access the performance of your trained models with different evaluation 

metrics 

6. You can compete on different machine learning competitions on Kaggle or Zindi 


