
CS3: Computer Science Level 3

Study Unit

3

 Training and Testing Machine

Learning Models

Training and Testing

Machine Learning

Models Outline

 Scikit-learn module

 Data preprocessing

 Training and models

evaluation

 Competing on Kaggle

Study Unit Duration

This Study Session requires a

minimum of 3 hours’ formal

study time.

You may spend an additional

2-3 hours on revision.

Preamble

Scikit-learn is a library in Python that provides many supervised learning

and unsupervised algorithms. It is built upon some of the packages you

already familiar with, like NumPy, Pandas, and Matplotlib. With Scikit-

learn module, you can train different machine learning models such as

regression and classification and check their performance using any of the

metrics discussed in unit 2.

Learning Outcomes of Study Unit 3

Upon completion of this study unit, you should be able to:

3.1 Train and evaluate classification models for predicting unknown

categorical label and Solving problem using exploratory data analysis

techniques.

3.2 Train and evaluate Logistic regression models for predicting

unknown continuous label

3.3 Train and evaluate Logistic regression models for predicting

unknown continuous label and how to select best model among the

trained models

3.4 Compete on Kaggle for machine learning and data science

competition

CS3: Computer Science Level 3

Terminologies, Acronyms and their Meaning

AI Artificial Intelligence

ML Machine Learning

RL Reinforcement Learning

DL Deep learning

EDA Exploratory Data Analysis

np NumPy

sns Seaborn

pd Pandas

TP True Positive

FP False Positive

FN False Negative

TN True Negative

RMSE Root Mean Squared Error

3.1 Introduction to machine learning module: The Scikit-learn

The functionality that scikit-learn provides include:

 Regression

 Classification

 Clustering

 Model selection

 Preprocessing

Installation

The easiest way to install scikit-learn is by running the following on your terminal:

pip install -U scikit-learn

or

conda install -c conda-forge scikit-learn

Importing Scikit-learn module for classification models

Some of the classification models that can be imported from sklearn library includes:

CS3: Computer Science Level 3

 Logistic Regression: from sklearn.linear_model import LogisticRegression

 K Nearest Neighbor: from sklearn.neighbors import KNeighborsClassifier

 Support Vector Machine: from sklearn.svm import SVC

 Decision Trees Classifier: from sklearn.tree import DecisionTreeRegressor

 Random Forest Classifier: from sklearn.ensemble import RandomForestClassifier

 Gradient Boost Classifier: from sklearn.ensemble import
GradientBoostingClassifier

Importing Scikit-learn module for regression models

Some of the regression models that can be imported from sklearn library includes:

 Linear Regression: from sklearn.linear_model import LinearRegression

 K Nearest Neighbor Regressor: from sklearn.neighbors import
KNeighborsRegressor

 Support Vector Machine: from sklearn.svm import SVR

 Decision Trees Regressor: from sklearn.tree import DecisionTreeRegressor

 Random Forest Regressor: from sklearn.ensemble import
RandomForestRegressor

 Gradient Boost Regressor: from sklearn.ensemble import
GradientBoostingRegressor

3.1.1 Classification Machine Learning Model with Health Provider dataset in Ethiopia

Problem statement

You work as an analyst in the marketing department of a company that provides various

medical insurance in Ethiopia. Your manager is unhappy with the low sales volume of a

specific kind of insurance. The data engineer provides you with a sample dataset for those

that visit the company website for medical insurance.

The dataset contains the following columns:

 User ID

 Gender

 Age

CS3: Computer Science Level 3

 Salary

 Purchase: An indicator of whether the users purchased (1) or not-purchased (0) a

particular product.

We plan to use the following classifier to predict whether a person that visits the insurance

company will buy or not.

 Logistic regression

 Random forest

 Naive Bayes

 XGBoost

 Support Vector Machine (SVM)

Import Python modules

We need to import some packages that will enable us to explore the data and build machine

learning models

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

insurance = pd.read_csv("datasets/Medical_insurance_dataset.csv")

insurance.head(5)

CS3: Computer Science Level 3

insurance.shape

(400, 5)

We have 5 variables and 400 instances of those that want to buy medical insurance or not in

this data. The User ID is a random number generated for every customer to comes to the

company for medical insurance. Therefore, it is not useful in predicting whether the person

will buy medical insurance or not. We will therefore, remove that variable from the data.

insurance.drop(["User ID"], axis= "columns", inplace = True)

insurance.head()

We want to transform or recode the label Purchased to have 1 for those that bought the

insurance and 0 for those that did not purchased the insurance. This will transform the

output variable (label) to be numeric.

insurance["Purchased"] = insurance["Purchased"].apply(lambda x: 1 if x == "pu

rchased" else 0)

insurance.head()

CS3: Computer Science Level 3

Now we have 3 features that include gender, age, and estimated salary while purchased

is the label in this data. Since the label has just two classes or categories (purchased (1) and

not-purchased (0)), this is a binary classification problem.

3.1.2 Exploratory Data Analysis

Fact generated by data exploratory will help us to know those features that can predict

whether a person will purchase medical insurance or not. Let us start by visualizing the

proportion of those that want to buy medical insurance or not.

sns.countplot(x = "Purchased", data = insurance);

As you can see, majority of those that visit the medical insurance company did not want to

buy the insurance. This is an example of class imbalanced. That is, there is no equal

proportion of those that will buy or not.

sns.countplot(x = "Gender", data = insurance);

CS3: Computer Science Level 3

The proportion of males are almost the same as females.

sns.countplot(x = "Gender", hue = "Purchased", data = insurance)

It seems that more females would purchase the insurance when compare with males.

CS3: Computer Science Level 3

sns.boxplot(x = "Purchased", y = "Age", data = insurance);

From the look of things, other people purchased the insurance compared with the younger

people.

sns.boxplot(x = "Purchased", y = "EstimatedSalary", data = insurance);

CS3: Computer Science Level 3

People that earned higher salary purchased the insurance while those that earned low did

not purchase the insurance. Of course, it is expected you purchase a medical insurance when

you have money.

Importing machine learning models

from sklearn import metrics # For model evaluation

from sklearn.model_selection import train_test_split # To divide the data int

o training and test set

3.1.3 Data Preprocessing

Separating features and the label from the data

Now is the time to build machine learning models for the task of predicting whether the

customers will buy medical insurance or not. Therefore, we shall separate the set of features

(X) from the label (Y).

split data into features and target

X = insurance.drop(["Purchased"], axis= "columns") # dropping the label varia

ble (Purchased) from the data

CS3: Computer Science Level 3

y = insurance["Purchased"]

X.head()

y.head()

One-hot encoding

As discussed in data preprocessing, we need to create a one-hot encoding for all the

categorical features in the data because some algorithms cannot work with categorical data

directly. They require all input variables and output variables to be numeric. In this case, we

will create a one-hot encoding for the gender feature by using pd.get_dummies().

pd.get_dummies(insurance["Gender"])

CS3: Computer Science Level 3

In fact, pd.get_dummies() is very powerful to actually locate the categorical features and

create a one-hot encoding for them. For example:

pd.get_dummies(X)

We now save this one-hot encoding result into X.

CS3: Computer Science Level 3

X = pd.get_dummies(X)

X.head()

Split the data into training and test set

As discussed in A, We will split our dataset (Features (X) and Label (Y)) into training and test

data by using train_test_split() function from the sklearn. The training set will be 80% while

the test set will be 20%. The random_state that is set to 1234 is for all of us to have the same

set of data. It can be set to any number of choices.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, ra

ndom_state= 1234)

We now have the pair of training data (X_train, y_train) and test data (X_test, y_test)

3.2 Model training and evaluation

We will use the training data to build the model and then use test data to make prediction

and evaluation respectively.

3.2.1 Logistic regression

Let’s train a Logistic regression model with our training data. We need to import the Logistic

regression from the sklearn model

Fitting Logistic Regression to the Training set

from sklearn.linear_model import LogisticRegression

We now create an object of class LogisticRegression() to train the model on

CS3: Computer Science Level 3

logisticmodel = LogisticRegression()

logisticmodel.fit(X_train, y_train)

LogisticRegression()

logisticmodel.fit trained the Logistic regression model. The model is now ready to make

prediction for the unknown label by using only the features from the test data (X_test).

logisticmodel.predict(X_test)

array([0,

0,

0, 0, 0, 0])

Let’s save the prediction result into logistic_prediction. This is what the model predicted

for us.

logistic_prediction = logisticmodel.predict(X_test)

Model evaluation

Since we know the true label in the test set (i.e. y_test), we can compare this prediction with

it, hence evaluate the logistic model. I have created a function that will help you visualize a

confusion matrix for the logistic model and you can call on it henceforth to check the

performance of any model.

def ConfusionMatrix(ytest, ypred, label = ["Negative", "Positive"]):

 "A beautiful confusion matrix function to check the model performance"

 from sklearn.metrics import confusion_matrix

 import seaborn as sns

 cm = confusion_matrix(ytest, ypred)

 plt.figure(figsize=(7, 5))

 sns.heatmap(cm, annot = True, cbar = False, fmt = 'd', cmap = 'YlGn')

 plt.xlabel('Predicted', fontsize = 13)

 plt.xticks([0.5, 1.5], label)

 plt.yticks([0.5, 1.5], label)

CS3: Computer Science Level 3

 plt.ylabel('Truth', fontsize = 13)

 plt.title('A confusion matrix');

By using the ConfusionMatrix() function, we have:

ConfusionMatrix(y_test, logistic_prediction, label= ["not-purchased", "purcha

sed"])

Interpretation of the logistic regression model evaluation performance

 There are 54 True Negatives (TN): predicting that the customer will not buy the

insurance and truly the customer did not buy the insurance.

 There are 26 False Negative (FN): predicting that the customer will not buy the

insurance and the customer actually bought the insurance.

Evaluation metric

We will use some functions such accuracy and F1-score from metrics module.

We can check the accuracy by using:

CS3: Computer Science Level 3

metrics.accuracy_score(y_test, logistic_prediction)

0.675

The accuracy of the model is 66.25%. We cannot trust this accuracy since the data is class

imbalanced. Therefore, we are going to use F1 score instead.

metrics.f1_score(y_test, logistic_prediction)

0.0

As you can see from the confusion matrix and the result of F1 score, this model is not efficient

to predict whether or not a customer will buy the insurance.

Naive Bayes

Let’s train a Naive Bayes classifier with our training data. We need to import the model

from the sklearn model

from sklearn.naive_bayes import GaussianNB

naivemodel = GaussianNB()

naivemodel.fit(X_train, y_train)

GaussianNB()

naivemodel.fit() trained the Naive Bayes model. The model is now ready to make prediction

for the unknown label by using only the features from the test data (X_test).

naivemodel_prediction = naivemodel.predict(X_test)

You can call one naivemodel_predictionto see the prediction

naivemodel_prediction

array([0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0,

0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0])

By using the ConfusionMatrix() function, we can see how the model performed:

CS3: Computer Science Level 3

ConfusionMatrix(y_test, naivemodel_prediction, label= ["not-purchased", "purc

hased"])

Interpretation of the Naive model evaluation performance

 There are 49 True Negatives (TN): predicting that the customer will not buy the

insurance and truly the customer did not buy the insurance.

 There are 19 True Positives (TP): predicting that the customer will buy the insurance

and truly the customer did buy the insurance.

 There are 7 False Negatives (FN): predicting that the customer will not buy the

insurance and the customer actually bought the insurance.

 There are 5 False Positives (FN): predicting that the customer will buy the insurance

and the customer did not buy the insurance.

Evaluation metrics

We are going to check the accuracy and F1 score of them model.

We can check the accuracy by using:

CS3: Computer Science Level 3

metrics.accuracy_score(y_test, naivemodel_prediction)

0.85

The accuracy of the model is 85%

We can check the F1 score by using:

metrics.f1_score(y_test, naivemodel_prediction)

0.76

The F1 score of the model is 76%

As you can see, this model seems good in predicting whether a patient will buy insurance

or not.

3.2.2 Random Forest Model

Let’s train a Random Forest model with our training data. We need to import the Random

Forest model from the sklearn module

from sklearn.ensemble import RandomForestClassifier

randomforestmodel = RandomForestClassifier()

randomforestmodel.fit(X_train, y_train)

RandomForestClassifier()

randomforestmodel.fit() trained the Random Forest model on the training data. The model

is now ready to make prediction for the unknown label by using only the features from the

test data (X_test).

randomforestmodel_prediction = randomforestmodel.predict(X_test)

You can call one randomforestmodel_prediction to see the prediction

randomforestmodel_prediction

CS3: Computer Science Level 3

array([0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0,

0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0])

By using the ConfusionMatrix() function, we can see how the model performed:

ConfusionMatrix(y_test, randomforestmodel_prediction, label= ["not-purchased"

, "purchased"])

Interpretation of the Random Forest model evaluation performance

 There are 45 True Negatives (TN): predicting that the customer will not buy the

insurance and truly the customer did not buy the insurance.

 There are 22 True Positives (TP): predicting that the customer will buy the insurance

and truly the customer did buy the insurance.

 There are 4 False Negatives (FN): predicting that the customer will not buy the

insurance and the customer actually bought the insurance.

CS3: Computer Science Level 3

 There are 9 False Positives (FN): predicting that the customer will buy the insurance

and the customer did not buy the insurance.

Evaluation metrics

We are going to check the accuracy and F1 score of them model.

We can check the accuracy by using:

metrics.accuracy_score(y_test, randomforestmodel_prediction)

0.8375

The accuracy of the model is 83.75%

We can check the F1 score by using:

metrics.f1_score(y_test, randomforestmodel_prediction)

0.7719298245614036

The F1 score of the model is 77.19%

As you can see, this model seems good in predicting whether a patient will buy insurance

or not.

3.2.3 Extreme Gradient Boost (XGBoost) Model

Let’s train an XGBoost model with our training data. We need to import the XGBoost model

from the sklearn module but before we do that, we need to install the module because it is

not available in the sklearn.

How to install XGBoost

Go to your termina and type pip install xgboost

pip install xgboost

CS3: Computer Science Level 3

After installation, you can now import it as follows:

from xgboost import XGBClassifier

xgboostmodel = XGBClassifier(use_label_encoder=False)

xgbboostmodel = xgboostmodel.fit(X_train, y_train)

xgboostmodel.fit() trained the XGBoost model on the training data. The model is now ready

to make prediction for the unknown label by using only the features from the test data

(X_test).

xgbboostmodel_prediction = xgboostmodel.predict(X_test)

You can call on xgbboostmodel_prediction to see the prediction

xgbboostmodel_prediction

array([0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0,

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0])

By using the ConfusionMatrix() function, we can see how the model performed:

ConfusionMatrix(y_test, xgbboostmodel_prediction, label= ["not-purchased", "p

urchased"])

CS3: Computer Science Level 3

Interpretation of the XGBoost model evaluation performance

 There are 46 True Negatives (TN): predicting that the customer will not buy the

insurance and truly the customer did not buy the insurance.

 There are 18 True Positives (TP): predicting that the customer will buy the insurance

and truly the customer did buy the insurance.

 There are 8 False Negatives (FN): predicting that the customer will not buy the

insurance and the customer actually bought the insurance.

 There are 8 False Positives (FN): predicting that the customer will buy the insurance

and the customer did not buy the insurance.

Evaluation metrics

We are going to check the accuracy and F1 score of the model.

We can check the accuracy by using:

metrics.accuracy_score(y_test, xgbboostmodel_prediction)

0.8

CS3: Computer Science Level 3

The accuracy of the model is 80%

We can check the F1 score by using:

metrics.f1_score(y_test, xgbboostmodel_prediction)

0.6923076923076923

The F1 score of the model is 69.23%

As you can see, this model seems good in predicting whether a patient will buy insurance or

not.

3.2.4 Support Vector Machine (SVM)

Let’s train a Support Vector Machine model with our training data. We need to import the

Support Vector Machine model from the sklearn module

from sklearn.svm import SVC

SVMmodel = SVC()

SVMmodel.fit(X_train, y_train)

SVC()

SVMmodel.fit() trained the Support Vector Machine on the training data. The model is now

ready to make prediction for the unknown label by using only the features from the test data

(X_test).

SVMmodel_prediction = SVMmodel.predict(X_test)

You can call on SVMmodel_prediction to see what has been predicted.

SVMmodel_prediction

array([0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0])

By using the ConfusionMatrix() function, we can see how the model performed:

CS3: Computer Science Level 3

ConfusionMatrix(y_test, SVMmodel_prediction, label= ["not-purchased", "purcha

sed"])

Interpretation of the Random Forest model evaluation performance

 There are 51 True Negatives (TN): predicting that the customer will not buy the

insurance and truly the customer did not buy the insurance.

 There are 13 True Positives (TP): predicting that the customer will buy the insurance

and truly the customer did buy the insurance.

 There are 13 False Negatives (FN): predicting that the customer will not buy the

insurance and the customer actually bought the insurance.

 There are 3 False Positives (FN): predicting that the customer will buy the insurance

and the customer did not buy the insurance.

Evaluation metrics

We are going to check the accuracy and F1 score of the model.

We can check the accuracy by using:

CS3: Computer Science Level 3

metrics.accuracy_score(y_test, SVMmodel_prediction)

0.8

The accuracy of the model is 80%

We can check the F1 score by using:

metrics.f1_score(y_test, SVMmodel_prediction)

0.6190476190476191

The F1 score of the model is 61.9%

As you can see, this model seems good in predicting whether a patient will buy insurance or

not.

Models Summary

Model (s) Accuracy (%) F1-score (%)

Logistic regression 67.5 0

Naive Bayes 85 76

Random Forest 83.75 77.19

XGBoost 80 69.23

SVM 80 61.9

Having train all the five (5) models, we can see that the best model that can accurately predict

whether a customer will buy the insurance or not is the Random Forest Model.

CS3: Computer Science Level 3

Class activity 1 (Peer to peer review activity)

Class activity 2

 Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the discussion

Use the following models to predict whether a customer will buy

insurance or not. Your teacher has also included how to import

those models for you.

 K Nearest Neighbor: from sklearn.neighbors import
KNeighborsClassifier

 Decision Trees Classifier: from sklearn.tree import
DecisionTreeClassifier

 Gradient Boost Classifier: from sklearn.ensemble import
GradientBoostingClassifier

Which of the three (3) model is the best in term of the F1 score?

The employee retention dataset (HR_comma_sep.csv) from

https://www.kaggle.com/giripujar/hr-analytics can be seen in the activity

directory. The dataset is from Human resources department of one big company

in Somalia. The HR want to determine what is making the staff to leave the

company and they have tasked you, a data scientist, to build a model to predict

who is like to leave the company. The label in the dataset is left (retention):

1. Do some exploratory data analysis to figure out which variables have direct and clear impact on

employee retention (i.e. whether they leave the company or continue to work)

2. Plot bar charts showing impact of employee salaries on retention

3. Plot bar charts showing correlation between department and employee retention

4. Build at least three classification models for the dataset

5. Measure the accuracy of those models

https://www.kaggle.com/giripujar/hr-analytics

CS3: Computer Science Level 3

3.3 Regression Machine Learning Model with Kenya restaurant

dataset

The objective of the regression task is to predict the amount of tip (gratuity in Kenya Shilling)

given to a food server based on total_bill, gender, smoker (whether they smoke in the party

or not), day(day of the week for the party), time(time of the day whether for lunch or dinner),

and size(size of the party).

Label: The label for this problem is tip.

Features: There are 6 features and they include total bill, gender, smoker, day, time, and

size.

We plan to use the following regression models (regressor) to predict the amount of tips

that will be given during a particular party in the restaurant:

 Ordinary Least Square (OLS)

 Support Vector Machine (SVM)

 Extreme Gradient Boosting (XGBoost)

 Decision Tree

 Random Forest

3.3.1 Import Python modules

We need to import some packages that will enable us to explore the data and build machine

learning models

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

6. Which model is the best among the models trained?

CS3: Computer Science Level 3

import seaborn as sns

from pandas_profiling import ProfileReport

tip = pd.read_csv("datasets/tips.csv")

tip.head(10)

tip.shape

(744, 7)

We can use pandas_profiling to do some data exploration before training our models

tip.profile_report()

CS3: Computer Science Level 3

CS3: Computer Science Level 3

CS3: Computer Science Level 3

CS3: Computer Science Level 3

CS3: Computer Science Level 3

CS3: Computer Science Level 3

We can also explore the relationship between the amount of tip and categorical variables

tip vs. gender

sns.boxplot(x = "gender", y = "tip", data = tip)

plt.ylabel("Amount of tip");

CS3: Computer Science Level 3

The amount of tips given by both gender is almost the same although there was an extreme

amount of tip given by some men.

tip vs. smoker

sns.boxplot(x = "smoker", y = "tip", data = tip)

plt.ylabel("Amount of tip");

CS3: Computer Science Level 3

Smoker and non-smoker gave almost amount of tip.

tip vs. time

sns.boxplot(x = "time", y = "tip", data = tip)

plt.ylabel("Amount of tip");

CS3: Computer Science Level 3

Smoker and non-smoker gave almost amount of tip.

3.3.2 Model building

After getting some insight about the data, we can now prepare the data for machine learning

modelling

Importing machine learning models

from sklearn import metrics # For model evaluation

from sklearn.model_selection import train_test_split # To divide the data int

o training and test set

Data Preprocessing

Separating features and the label from the data

Now is the time to build machine learning models for the task of predicting the amount of tip

that would be given for any party in the restaurant. Therefore, we shall separate the set of

features (X) from the label (Y).

tip.head(4)

CS3: Computer Science Level 3

split data into features and target

X = tip.drop(["tip"], axis= "columns") # droping the label variable (tip) fro

m the data

y = tip["tip"]

X.head()

y.head()

Since the label is continuous, this is a regression task.

One-hot encoding

As discussed in data preprocessing,, we need to create a one-hot encoding for all the

categorical features in the data because some algorithms cannot work with categorical data

CS3: Computer Science Level 3

directly. They require all input variables and output variables to be numeric. In this case, we

will create a one-hot encoding for gender, smoker, day and time by using pd.get_dummies().

pd.get_dummies(X)

We now save this result of one-hot encoding into X.

X = pd.get_dummies(X)

X.head()

Split the data into training and test set

We will split our dataset (Features (X) and Label (Y)) into training and test data by using

train_test_split() function from the sklearn. The training set will be 80% while the test set

will be 20%. The random_state that is set to 1234 is for all of us to have the same set of data.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, ra

ndom_state= 1234)

We now have the pair of training data (X_train, y_train) and test data (X_test, y_test)

CS3: Computer Science Level 3

3.3.3 Model Training and evaluation

We will use the training data to build the model and then use test data to make prediction

and evaluation respectively.

Linear Regression

Let’s train a linear regression model with our training data. We need to import the Linear

regression from the sklearn model

Fitting Linear Regression to the Training set

from sklearn.linear_model import LinearRegression

We now create an object of class LinearRegression to train the model on

linearmodel = LinearRegression()

linearmodel.fit(X_train, y_train)

LinearRegression()

linearmodel.fit trained the Linear regression model. The model is now ready to make

prediction for the unknown label by using only the features from the test data (X_test).

linearmodel.predict(X_test)

Let’s save the

prediction result into

linearmodel_prediction. This is what the model predicted for us.

CS3: Computer Science Level 3

linearmodel_prediction = linearmodel.predict(X_test)

Model evaluation

Since the prediction is continuous, we can only measure how far the prediction is from the

actual values. Let’s check the error for each prediction.

y_test - linearmodel_prediction

The positive ones show that the prediction is higher than the actual values while the negative

ones are below the actual values. Let’s now measure this error by using the Root Mean

Squared Error (RMSE).

MSE = metrics.mean_squared_error(y_test, linearmodel_prediction)

MSE

20201.415276948974

We now take the square root of the Mean Squared Error to get the value of the RMSE.

np.sqrt(MSE)

142.13168287524417

Therefore, the RMSE for the linear regression is 142.1316828752442.

Random Forest Model

CS3: Computer Science Level 3

Let’s train a Random Forest model with our training data. We need to import the model from

the sklearn module

from sklearn.ensemble import RandomForestRegressor

randomforestmodel = RandomForestRegressor()

randomforestmodel.fit(X_train, y_train)

RandomForestRegressor()

randomforestmodel.fit() trained the Random Forest model on the training data. The model

is now ready to make prediction for the unknown label by using only the features from the

test data (X_test).

randomforestmodel_prediction = randomforestmodel.predict(X_test)

MSE = metrics.mean_squared_error(y_test, randomforestmodel_prediction)

MSE

25061.411952729868

We now take the square root of the Mean Squared Error to get the value of the RMSE.

np.sqrt(MSE)

158.30796553783978

Therefore, the RMSE of Random Forest is 160.3155113080993.

Extreme Gradient Boost (XGBoost) Model

Let’s train an XGBoost model with our training data. We need to import the XGBoost model

from the xgboost module.

from xgboost import XGBRegressor

xgboostmodel = XGBRegressor(use_label_encoder=False)

xgbboostmodel = xgboostmodel.fit(X_train, y_train)

CS3: Computer Science Level 3

xgboostmodel.fit() trained the XGBoost model on the training data. The model is now ready

to make prediction for the unknown label by using only the features from the test data

(X_test).

xgbboostmodel_prediction = xgboostmodel.predict(X_test)

You can call on xgbboostmodel_prediction to see the prediction

MSE = metrics.mean_squared_error(y_test, xgbboostmodel_prediction)

MSE

29250.892630941566

We now take the square root of the Mean Squared Error to get the value of the RMSE.

np.sqrt(MSE)

171.0289233753799

Therefore, the RMSE for the xgbboost model is 171.0289233753799

Support Vector Machine (SVM)

Let’s train a Support Vector Machine model with our training data. We need to import the

Support Vector Machine model from the sklearn module

from sklearn.svm import SVR

SVMmodel = SVR()

SVMmodel.fit(X_train, y_train)

SVR()

SVMmodel.fit() trained the Support Vector Machine on the training data. The model is now

ready to make prediction for the unknown label by using only the features from the test data

(X_test).

SVMmodel_prediction = SVMmodel.predict(X_test)

You can call on SVMmodel_prediction to see what has been predicted.

CS3: Computer Science Level 3

MSE = metrics.mean_squared_error(y_test, SVMmodel_prediction)

MSE

19853.340298954365

We now take the square root of the Mean Squared Error to get the value of the RMSE.

np.sqrt(MSE)

140.90188181480886

Therefore, the RMSE for the Support Vector Machine is 140.90188181480886

Decision Tree

Let’s train a Decision Tree model with our training data. We need to import the Decision Tree

model from the sklearn module

from sklearn.tree import DecisionTreeRegressor

decisiontree = DecisionTreeRegressor()

decisiontree.fit(X_train, y_train)

DecisionTreeRegressor()

decisiontree.fit() trained the Decision Tree on the training data. The model is now ready to

make prediction for the unknown label by using only the features from the test data (X_test).

decisiontree_prediction = decisiontree.predict(X_test)

You can call on decisiontree_prediction to see what has been predicted.

MSE = metrics.mean_squared_error(y_test, decisiontree_prediction)

MSE

49999.11530536912

We now take the square root of the Mean Squared Error to get the value of the RMSE.

np.sqrt(MSE)

CS3: Computer Science Level 3

223.60481950389425

Therefore, the RMSE for the Decision Tree is 223.60481950389425

Models Summary

Model (s) RMSE

Linear regression 142.13

Random Forest 158.31

XGBoost 171.03

SVM 140.90

Decision Tree 223.60

Having train all the five (5) models, we can see that the best model that can accurately predict

the amount of tips that would be given for a given party in the restaurant is the model with

the lowest RMSE and that is Support Vector Machine.

Class activity 3 (Peer to peer review activity)

Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the

discussion

Use the following models to predict the amount of tips that would

be given for a given party in the restaurant. Your teacher has also

included how to import those models for you.

 K Nearest Neighbor: from sklearn.neighbors import KNeighborsRegressor

 Ridge Regression: from sklearn.linear_model import Ridge

 Gradient Boost Classifier: from sklearn.ensemble import GradientBoostingRegressor

Which of the three (3) model is the best in term of RMSE?

CS3: Computer Science Level 3

3.4 Machine Learning Competition Platform

3.4.1 Kaggle: Your Machine Learning and Data Science Community

Kaggle is the world’s largest data science community with powerful tools and resources to

help you achieve your data science goals. You can access Kaggle via www.kaggle.com.

Kaggle enables data scientists and other developers to engage in running machine learning

contests, write and share code, and to host datasets. The types of data science problems

posted on Kaggle can be anything from attempting to predict cancer occurrence by

examining patient records to analyzing sentiment to evoke by movie reviews and how this

affects audience reaction.

CS3: Computer Science Level 3

Kaggle Registration

After a successful registration, you can now compete on different competitions on Kaggle.

3.4.2 Titanic Competition

CS3: Computer Science Level 3

Overview tab

This contains a general introduction to the competition and in some cases, a case study to

the problem you are trying to solve is described

Data

It contains information about the dataset and a detailed explanation of each column in the

dataset

CS3: Computer Science Level 3

Leaderboard

This display the position of each participant relative to each other based on what they

submitted

CS3: Computer Science Level 3

Rules

This tab explains the rules of the competition. Always remember to read this section

CS3: Computer Science Level 3

Team

Some competitions allow for team submission. This means that you can form a team to work

with in that competition

CS3: Computer Science Level 3

3.4.3 Other Machine Learning Competition Platforms

Other machine learning competitions are also available and that include:

Zindi

Zindi Africa connects organisations with thriving African data science community to solve

the world’s most pressing challenges using machine learning and AI. Visit

https://zindi.africa/competitions for competition on Zindi.

DRIVEN DATA

DrivenData brings cutting-edge practices in data science and crowdsourcing to some of the

world's biggest social challenges and the organizations taking them on. They host online

challenges, usually lasting 2-3 months, where a global community of data scientists competes

to come up with the best statistical model for difficult predictive problems that make a

https://zindi.africa/competitions

CS3: Computer Science Level 3

difference. Visit https://www.drivendata.org/competitions for competition on

DRIVENDATA.

Class activity 4

Additional resources

For more resources in this section please consider the following:

 https://datatofish.com/multiple-linear-regression-python/

 https://www.w3schools.com/python/python_ml_getting_started.asp

 https://machinelearningmastery.com/a-gentle-introduction-to-scikit-learn-a-python-machine-

learning-library/

Summary of Study Unit 3

In this study unit, you have learnt that:

1. Scikit-learn module can be used to train both regression and classification models

2. Before training a model, you to carry out some data processing such as separating

features from the label, create one-hot encoding for categorical features, and split the

data to training and test set

 You will compete with others on the Titanic challenge via

https://www.kaggle.com/c/titanic.

 Read about the competition instructions and download the data

 Build a predictive model using the train data and predict those that are likely to survive or not

using the test data.

 Submit your prediction and note your accuracy on Kaggle

https://www.drivendata.org/competitions/
https://datatofish.com/multiple-linear-regression-python/
https://www.w3schools.com/python/python_ml_getting_started.asp
https://machinelearningmastery.com/a-gentle-introduction-to-scikit-learn-a-python-machine-learning-library/
https://machinelearningmastery.com/a-gentle-introduction-to-scikit-learn-a-python-machine-learning-library/
https://www.kaggle.com/c/titanic

CS3: Computer Science Level 3

3. A training data will contain at most 80% of the original data while the test set will

take the remainder

4. You will train the models with your training data and evaluate the performance of

those models with the test set.

5. You can access the performance of your trained models with different evaluation

metrics

6. You can compete on different machine learning competitions on Kaggle or Zindi

