

 CS2: Computer Science Level 2

 Programming in Python

Study

Unit 2

String Manipulation and

Data Structures in Python

String Manipulation

and Data Structures in

Python Outline

 Python Strings

 Basic string method

 List and its methods

 Tuple and its methods

 Set and its methods

 Dictionary and its

methods

Study Unit Duration

This Study Session requires a

minimum of 3 hours’ formal

study time.

You may spend an additional

2-3 hours on revision.

Preamble

Apart from different data type such as integer, float, string and Boolean,

Python also has data structure which include list, tuple, set, and

dictionary. Data structures are a collection of data elements that are

structured in some manner and are the core of Python programming

language.

In this study unit, you will learn string manipulation and data structure

in Python.

Learning Outcomes of Study Unit 2

Upon completion of this study unit, you should be able to:

2.1 Manipulate string in Python

2.2 Create and use data structures (list and tuple) and their methods to

perform various tasks

2.3 Create and use data structures (set, and dictionary) and their

methods to perform various tasks

CS2: Computer Science Level 2

Terminologies, Acronyms and their Meaning

.ipynb Jupyter notebook or Jupyter

lab extension

.py Python extension

IDE Integrated Development

environment (IDE)

R R programming language

EDA Exploratory Data Analysis

NaN Not a Number

Np Numpy

Pd Pandas

Os Operating system

AI Artificial Intelligence

Int Integer data type

Str String data type

Bool Boolean data type

CS2: Computer Science Level 2

 Programming in Python

2.1 String Manipulation in Python

2.1.1 Python Strings

A string is an ordered sequence of characters. Two key words here, ordered and characters.

Ordered means that we will be able to use indexing and slicing to grab elements from the string.

Creating Strings

Single or double quotes are okay.

"Hi, welcome to string manipulation in Python"

‘Hi, welcome to string manipulation in Python’

We can use another set of quotes to capture that inside a single quote. For example:

"I'm a beginner in python programming!"

“I’m a beginner in python programming!”

"I'm feeling curious"

“I’m feeling curious”

The len() function

We can get the length of a string by using len() function. Every position is counted including

spaces.

Examples

len("Python")

6

len("Python is simple")

16

len("I'm feeling curious")

19

CS2: Computer Science Level 2

 Programming in Python

2.1.2 String Operations

We can perform some operations such as string concatenation and replication in Python.

String Concatenation

Addition operator (+) enable us to join two strings together. This is known as string concatenation.

For example, “Python” + “string” will become Pythonstring. Also, if S1 and S2 are strings, then

S1 + S2 is also a string (string concatenation).

We can use single quote with a space ‘ ’ or double quote with a space

“ ” to create an empty string.

Example 1
a = "Python is"

b = "a programming language"

a + b

‘Python isa programming language’

Example 2
a + " " + b

‘Python is a programming language’

Example 3
"My name is Jamal" + " and I am from Somalia"

‘My name is Jamal and I am from Somalia’

Example 4

A = "Hello"

B = " "

C = "world"

print(A + B + C)

Hello world

CS2: Computer Science Level 2

 Programming in Python

Example 5
A = "Hello " # Note the extra space after Hello

B = "world"

print(A + B)

Hello world

String Replication

With multiplication operator (*), we can repeat the number of times a particular string should be

repeated.

Example 1

Hello will be repeated three times

"Hello" * 3

‘HelloHelloHello’

Example 2

This will print Sudan in six times

country = "Sudan"

print(country*6)

SudanSudanSudanSudanSudanSudan

Example 3
"Python is simple " * 3

‘Python is simple Python is simple Python is simple’

Example 4

String replication and string concatenation

"Python is simple, " * 3 + "and Python is simple"

‘Python is simple, Python is simple, Python is simple, and Python is simple’

CS2: Computer Science Level 2

 Programming in Python

To concatenate two strings, we use the + operator

The * operator can be used to repeat the string for a given number of times.

2.1.3 Indexing and Slicing

Since strings are ordered sequences of characters, it means we can select single characters

(indexing) or grab sub-sections of the string (slicing).

Indexing

Indexing starts at 0, consider the string Somalia:

character: S o m a l i a

index: 0 1 2 3 4 5 6

You can access a particular character by putting its position index in a square bracket.

country = "Somalia"

print(country)

Somalia

country[0]

‘S’

country[3]

‘a’

country[5]

‘i’

CS2: Computer Science Level 2

 Programming in Python

Python also supports reverse indexing. Consider the string

character: S o m a l i a

index: 0 1 2 3 4 5 6

reverse index: -7 -6 -5 -4 -3 -2 -1

Reverse indexing is used commonly to grab the last “chunk” of a sequence.

country[-1]

‘a’

country[-2]

‘i’

country[-7]

‘S’

Slicing

We can grab entire subsections of a string with slice notation.

This is the notation:

[start : stop]

Key things to note:

 The starting index directly corresponds to where your slice will start

 The stop index corresponds to where your slice will go up to. It does not include this

index character!

 The step size is how many characters you skip as you go grab the next one.

For example, the index [0: 4] will be 0, 1, 2, 3. The last index will not be included. The index

[0 : 2] pulls the first two values out of the string. The index [1 : 3] pulls the second and third values

out of the string.

CS2: Computer Science Level 2

 Programming in Python

Let’s see some examples

country = "Ethiopia"

country[0 : 3]

‘Eth’

country[0 : 4]

‘Ethi’

country[2 : 4]

‘hi’

On either side of the colon, a blank stand for default.

 [: 2] corresponds to [start=default : stop = 2]. Default value here is 0

 [1:] corresponds to [start=1 : stop = default]. Default value here is the last index of the

string

Therefore, the slicing operation [:2] pulls out the first and second values in an array. The slicing

operation [1:] pull out the second through the last values in an array. The examples below

illustrate the default stop value is the last value in the array.

print(country)

Ethiopia

country[:2]

‘Et’

country[1:]

‘thiopia’

country[: 3]

‘Eth’

CS2: Computer Science Level 2

 Programming in Python

2.1.4 Basic String Methods

Methods are actions you can call off an object usually in the form .method_name() notice the

closed parenthesis at the end. Strings have many methods which you can use. In fact, you can get

a list of them by putting a dot(.) at the end of already assigned string and press a Tab key on your

keyboard. Let’s see some of them with examples.

basic = "hello world, I am still a beginner pythonista"

.upper()

.upper() will convert the string to upper case.

basic.upper()

‘HELLO WORLD, I AM STILL A BEGINNER PYTHONISTA’

.lower()

.lower() will convert the string to lower case.

basic.lower()

‘hello world, i am still a beginner pythonista’

CS2: Computer Science Level 2

 Programming in Python

.capitalize()

.capitalize() make the first character have upper case and the rest lower case.

basic.capitalize()

‘Hello world, i am still a beginner pythonista’

.title()

.title() will capitalize each word in a string.

basic.title()

‘Hello World, I Am Still A Beginner Pythonista’

.split()

.split() will split each character in the string.

basic.split()

[‘hello’, ‘world,’, ‘I’, ‘am’, ‘still’, ‘a’, ‘beginner’, ‘pythonista’]

2.1.5 String formatting

Sometimes, we will like to print our string with a specific format. We can use the function print()

to force the string to print to a new line by using \n:

print('this is a new line \nnotice how this is on another new line')

this is a new line notice how this is on another new line

We can also use the function print() to force the string to have some extra spaces (something like

when pressing tab on the keyboard) by using \t:

print('this is a tab\t notice how this prints with space between')

this is a tab notice how this prints with space between

CS2: Computer Science Level 2

 Programming in Python

2.1.6 String interpolation

String interpolation is the act of substituting values of variables into placeholders in a string. For

example, as your teacher, I can greet every student taking this course like this “Hello {Name of

person}, thank you for taking this course!”. I would like to replace the placeholder {Name of

person} with an actual name. This process is called string interpolation.

You can use the .format() method in a string, to perform string interpolation, this essentially insert

variables when printing a string.

Example 1

Name_of_student = "Ruth"

print("Welcome {}, thank you for taking this course!".format(Name_of_student))

Welcome Ruth, thank you for taking this course!

With the introduction of f-strings, we can actually do it in this way:

print(f"Hello {Name_of_student}, thank you for taking this course!")

Hello Ruth, thank you for taking this course!

In above example, the prefix f tells Python to substitute the value of the variable Name_of_student

inside curly brackets { }. So, that when we print, we get the above output. This new way of

formatting strings is powerful, easy to use, and we shall be using f string henceforth.

Example 2

username = "Jamal_cs21"

password = 8022021

print(f"Welcome {username} and your password is {password}")

Welcome Jamal_cs21 and your password is 8022021

Example 3

name = "Jamal"

action = 'learn'

CS2: Computer Science Level 2

 Programming in Python

print(f"The {name} needs to {action} python")

The Jamal needs to learn python

If we have just one variable to do string extrapolation for, we can use

print() function with the f-string.

Example 4

name = "Addisu"

print("My name is", name)

My name is Addisu

Example 5

name = "Addisu"

print(f"My name is {name}")

My name is Addisu

2.1.7 Formatting Numbers

You can also control the number of floating point or decimal places

num = 245.908343

print(f"The number is {num}")

The number is 245.908343

For one decimal place

print(f"The code is {num:.1f}")

The code is 245.9

CS2: Computer Science Level 2

 Programming in Python

For two decimal places

print(f"The code is {num:.2f}")

The code is 245.91

For three decimal places

print(f"The code is {num:.3f}")

The code is 245.908

For four decimal places

print(f"The code is {num:.4f}")

The code is 245.9083

2.1.8 Input and Output function

input() and print() functions are widely used for standard input and output operations respectively

in Python. There are many cases where we might want to take the input from the user. In Python,

we have the input() function that allows for this. You can get an input from a user and then save

that as a variable that can be used later in your program with the help of input() function.

Example 1

This program will ask you of your name. Please respond by typing your name, then, press enter

button on your keyboard.

CS2: Computer Science Level 2

 Programming in Python

Jamal

Any variable that comes as a result of input() will always be a string data

type.

Example 2

Example 3

The code below when run will ask of your name, please supply your name to it:

Example 4

This program will ask of your name, your age, and your country. It will then print for example,

My name is Jamal, I am 20 years old, and I am from Somali.

CS2: Computer Science Level 2

 Programming in Python

2.2 Data Structures in Python – Lists and Tuples

2.2.1 Lists

We’ve learned that strings are sequences of characters. Similarly, lists are sequences of objects,

they can hold a variety of data types in order, and they follow the same sequence and indexing

bracket rules that strings do. We can create a list by putting all items or elements in a square bracket

[] where each element is being separated by a comma. The items or elements in a list can be of

any data types i.e. floats, integers, strings, boolean or their combination.

Let’s explore some useful examples:

An empty list

alist = []

type(alist)

CS2: Computer Science Level 2

 Programming in Python

<class ‘list’>

my_list = [1, 2, 3]

my_list

[1, 2, 3]

a = 100

b = 200

c = 300

my_list3 = [a, b, c]

List of integers

ages = [21, 23, 16, 6, 76, 7]

ages

[21, 23, 16, 6, 76, 7]

type(ages)

<class ‘list’>

List of float

time = [2.23, 1.59, 4.18, 3.51]

time

[2.23, 1.59, 4.18, 3.51]

type(time)

<class ‘list’>

List of string

countries = ["Sudan", "South Sudan", "Kenya", "Ethiopia", "Somalia", "Uganda"]

countries

[‘Sudan’, ‘South Sudan’, ‘Kenya’, ‘Ethiopia’, ‘Somalia’, ‘Uganda’]

type(countries)

<class ‘list’>

Mixed lists

Mixed = [90, 2.5, "Jamal", 123, 0.75, True, False]

Mixed

CS2: Computer Science Level 2

 Programming in Python

[90, 2.5, ‘Jamal’, 123, 0.75, True, False]

type(Mixed)

<class ‘list’>

Nested Lists

Lists can hold other lists! This is called a nested list.

Examples

Let’s see some examples:

new_list = [1, 2, 3, "Ruth", ["a", "b", "c"]]

new_list

[1, 2, 3, ‘Ruth’, [‘a’, ‘b’, ‘c’]]

type(new_list)

<class ‘list’>

eastafrica_northafrica = [["Ethiopia", "Kenya", "Rwanda", "Somalia", "South Sudan", "Uganda”, “Burundi"],

 ["Algeria", "Egypt", "Libya", "Morocco", "Sudan", "Tunisia"]]

eastafrica_northafrica

[[‘Ethiopia’, ‘Kenya’, ‘Rwanda’, ‘Somalia’, ‘South Sudan’, ‘Uganda’, ‘Burundi’], [‘Algeria’,

‘Egypt’, ‘Libya’, ‘Morocco’, ‘Sudan’, ‘Tunisia’]]

type(eastafrica_northafrica)

<class ‘list’>

The range() function

We can also generate a list of sequence of numbers by using range() function. For example,

range(12) will generate numbers from 0 to 11 (12 numbers).

The range function also has the start, stop and step size i.e. range(start, stop,step_size). The

step_size is 1 if not provided. The range object is “lazy” and does not store all the values in the

memory. So, it remembers the start, stop, step_size.

Examples

range(10)

CS2: Computer Science Level 2

 Programming in Python

range(0, 10)

range(2, 8)

range(2, 8)

range(2, 20, 3)

range(2, 20, 3)

To force this function to output all the items, we can use the list() function.

Examples

list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

As you know, the data type is a list

type(list(range(10)))

<class ‘list’>

list(range(2, 8))

[2, 3, 4, 5, 6, 7]

list(range(2, 20, 3))

[2, 5, 8, 11, 14, 17]

The len() function

We can get the number of elements in a list by using len() function.

Examples

Mixed = [90, 2.5, 'Ezekiel', 123, 0.75, True, False]

len(Mixed)

7

CS2: Computer Science Level 2

 Programming in Python

east_africa = ["Ethiopia", "Kenya", "Rwanda", "Somalia", "South Sudan", "Uganda", "Burundi"]

len(east_africa)

7

eastafrica_northafrica = [["Ethiopia", "Kenya", "Rwanda", "Somalia", "South Sudan", "Uganda", "Burundi"],

 ["Algeria", "Egypt", "Libya", "Morocco", "Sudan", "Tunisia"]]

len(eastafrica_northafrica)

2

new_list = [1, 2, 3, ['a', 'b', 'c']]

len(new_list)

4

Indexing and Slicing

This works the same as the indexing and slicing of a string.

Example 1

mylist = [90, 2.5, "Joan", 123, 0.75, True, False, "Ruth", "Jamal"]

mylist[2]

‘Joan’

mylist[0:3]

[90, 2.5, ‘Joan’]

Example 2

new_list = [1, 2, 3, ['a', 'b', 'c']]

new_list[0]

1

new_list[3]

[‘a’, ‘b’, ‘c’]

new_list[3][0]

‘a’

CS2: Computer Science Level 2

 Programming in Python

Example 3

password_list = [2, 3, "four", [20, 30, 40, ["one", "two", "three"]]]

password_list[3]

[20, 30, 40, [‘one’, ‘two’, ‘three’]]

password_list[3][3]

[‘one’, ‘two’, ‘three’]

password_list[3][3][1:]

[‘two’, ‘three’]

Mutability of a list

List is mutable, that is you can change the element of a list to another.

Example 1

mylist = [1, 2, 3, 4, 5]

mylist[0]

1

mylist[0] = 9

mylist

[9, 2, 3, 4, 5]

As you can see, we have changed the first element in a list from 1 to 9.

Example 2

another_list = [90, 2.5, 'Aaden', 123, 0.75, True, False, 'Adhra', True, "No"]

another_list[2]

‘Aaden’

another_list[2] = "Jamal"

another_list

[90, 2.5, ‘Jamal’, 123, 0.75, True, False, ‘Adhra’, True, ‘No’]

CS2: Computer Science Level 2

 Programming in Python

2.2.2 List Methods

Methods are actions you can call from an object. Their typical format is:

mylist = [elements in a list]

mylist.method()

You must call the parenthesis to execute the method! Let’s go through a few methods that pertain

to lists.

.append()

This appends or add an object to the end of the list. It can only add one element at a time

Examples

mylist = [90, 2.5, 'Aaden', 123, 0.75, True, False, 'Adhra', True, "No"]

mylist

[90, 2.5, ‘Aaden’, 123, 0.75, True, False, ‘Adhra’, True, ‘No’]

mylist.append(6)

mylist

[90, 2.5, ‘Aaden’, 123, 0.75, True, False, ‘Adhra’, True, ‘No’, 6]

mylist.append("Jamal")

mylist

[90, 2.5, ‘Aaden’, 123, 0.75, True, False, ‘Adhra’, True, ‘No’, 6, ‘Jamal’]

.extend()

Alternative to .append() is .extend() which extends list by appending more than one element.

mylist.extend(["Addisu", "Aklilu", "Amondi", "Bakari"])

mylist

[90, 2.5, ‘Aaden’, 123, 0.75, True, False, ‘Adhra’, True, ‘No’, 6, ‘Jamal’, ‘Addisu’, ‘Aklilu’,

‘Amondi’, ‘Bakari’]

.insert()

.insert() method insert object before a given index position.

Examples

CS2: Computer Science Level 2

 Programming in Python

mylist = [90, 2.5, 'Aaden', 123, 0.75, True, False, 'Adhra', True, "No"]

mylist.insert(3, "Bakaffa")

mylist

[90, 2.5, ‘Aaden’, ‘Bakaffa’, 123, 0.75, True, False, ‘Adhra’, True, ‘No’]

visited_countries = ["America", "Rwanda", "Singapore", "Italy", "Canada", "Mauritius"]

visited_countries.insert(0, "South Africa")

visited_countries

[‘South Africa’, ‘America’, ‘Rwanda’, ‘Singapore’, ‘Italy’, ‘Canada’, ‘Mauritius’]

.pop()

.pop() method remove and return item at index (default last).

mylist = [90, 2.5, 'Aaden', 123, 0.75, True, False, 'Adhra', True, "No"]

mylist.pop()

‘No’

mylist

[90, 2.5, ‘Aaden’, 123, 0.75, True, False, ‘Adhra’, True]

mylist.pop(0)

90

mylist

[2.5, ‘Aaden’, 123, 0.75, True, False, ‘Adhra’, True]

.reverse()

.reverse() method reverse the order of the list

your_list = ["Sylvera", 90, 2.5, 'Aaden', 123, 0.75, True, False, 'Adhra', True, "No"]

your_list.reverse()

your_list

[‘No’, True, ‘Adhra’, False, True, 0.75, 123, ‘Aaden’, 2.5, 90, ‘Sylvera’]

visited_countries = ["America", "Rwanda", "Singapore", "Italy", "Canada", "Mauritius"]

visited_countries.reverse()

CS2: Computer Science Level 2

 Programming in Python

visited_countries

[‘Mauritius’, ‘Canada’, ‘Italy’, ‘Singapore’, ‘Rwanda’, ‘America’]

.sort()

.sort() method sort the list in ascending order and return None

Example 1

Example 1

egg_weight = [59, 56, 61, 68, 52, 53, 69, 54, 57, 51]

egg_weight.sort()

egg_weight

[51, 52, 53, 54, 56, 57, 59, 61, 68, 69]

Example 2

Data relating to the marks of 13 students in the Introduction to Python quiz are given below:

10, 15, 10, 9, 18, 16, 14, 12, 16, 13, 15, 20, 17.

Sort the marks in descending order.

marks = [10, 15, 10, 9, 18, 16, 14, 12, 16, 13, 15, 20, 17]

marks.sort(reverse = True)

marks

[20, 18, 17, 16, 16, 15, 15, 14, 13, 12, 10, 10, 9]

Class activity 6 (Peer to peer review activity)

 Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the

discussion

 Create a list that contains the names of your best friends.

 Use Python to access the third element in the name list.

 How many friends are in your list?

CS2: Computer Science Level 2

 Programming in Python

2..2.3 Tuples

Tuples are ordered sequences just like a list, but have one major difference, they are immutable.

That is, you cannot change them. So, in practice what does this actually mean? It means that you

cannot reassign an item once it’s in the tuple, unlike a list, where you can do a reassignment.

Just like the elements in a list are put in a square bracket [] separated by a comma, elements in a

tuple are enclosed in a parentheses or brackets () separated by comma ,.

You use parenthesis and commas (,) for a tuple

List is mutable while tuple is immutable

Examples

An empty tuple

atuple = ()

type(atuple)

<class ‘tuple’>

t = (3, 2)

t

(3, 2)

Tuple of integers

ages = (23, 2, 45, 6, 76, 7)

type(ages)

<class ‘tuple’>

Tuple of float

marks = (23.1, 20.8, 25.1, 17.9)

type(marks)

<class ‘tuple’>

Tuple of string

teachers_name = ("Diric", "Bilen", "Baruk", "Jamal", "Gelila")

CS2: Computer Science Level 2

 Programming in Python

type(teachers_name)

<class ‘tuple’>

Mixed Tuple

mixed_tuple = (21, 12.3, 33.6, 9, "Gelila", True, False)

type(marks)

<class ‘tuple’>

Nexted tuple

This is also known as a tuple of tuple

nexted = ("Ethiopia", (1, 2.5, 6), ('Kenya'), (1, 22, 14, 15))

type(nexted)

<class ‘tuple’>

The len() function

We can get the number of elements in a tuple by using len() function.

Example 1

mixed_tuple = (21, 12.3, 33.6, 23.8, 9, "Gelila", True, False)

len(mixed_tuple)

8

Example 2

nexted = ("Ethopia", (1, 2.5, 6), ('Kenya'), (1, 22, 14, 15))

len(nexted)

4

Indexing and Slicing

This works the same as the indexing and slicing of a list.

Example 1

mytuple = (90, 2.5, 'Aaden', 123, 0.75, True, False, 'Adhra', True, "No")

mytuple[3]

123

mytuple[0:3]

CS2: Computer Science Level 2

 Programming in Python

(90, 2.5, ‘Aaden’)

Example 2

new_tuple = (1, 2, 3, ('a', 'b', 'c'))

new_tuple[0]

1

new_tuple[3]

(‘a’, ‘b’, ‘c’)

new_tuple[3][0]

‘a’

Immutability of tuple

While list is mutable, tuple is not. That is, you can’t replace element of a tuple.

Examples

mytuple = (1, 2, 3)

mytuple[0] = 9

As you can see, you can’t add or change element of a tuple.

List’s methods are different from tuple’s method. Therefore, none of the methods in a list can work

in tuple. For example:

mytuple.append('NOPE!')

CS2: Computer Science Level 2

 Programming in Python

Tuple methods

Tuples only have two methods available .index() and .count()

 .index() returns the index of value.

 .count() returns number of occurrences of value

t = ("a", "b", "a", "c", "a")

t.index("b")

1

t.count("a")

3

Why use tuples?

Lists and tuples are very similar, so you may find yourself exchanging use cases for either one.

However, you should use a tuple for collections or sequences that shouldn’t be changed, such as

the dates of the year, or user information such as an address, street, city, etc.

Class Activity 7 (Peer to peer review activity)

Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the discussion

 Create a tuple that includes the names of your best friends

 Use Python to access the third element in the name list.

 What is the length of the tuple?

CS2: Computer Science Level 2

 Programming in Python

2.3 Data Structures in Python – Sets and Dictionary

2.3.1 Sets

Another fundamental data structure is Set! Set is an unordered and unindexed collection of unique

elements. We can construct them by using a curly bracket {} while elements in a set is being

separated by a comma (,). Let’s go ahead and make a set to see how it works:

Example 1

call_received = {0, 1, 4, 2, 3, 5}

call_received

{0, 1, 2, 3, 4, 5}

type(call_received)

<class ‘set’>

You will notice that elements in a set has been arranged in an organised ascending order

Example 2

Here are the set of fruits in my Fridge

myfruit = {"Apple", "Banana", "Cherry", "Orange", "Pineapples", "Grape", "Pawpaw"}

myfruit

{‘Cherry’, ‘Banana’, ‘Pineapples’, ‘Grape’, ‘Pawpaw’, ‘Orange’, ‘Apple’}

type(myfruit)

<class ‘set’>

One unique feature about set is that, it doesn’t support duplicate of an

element.

Example 1

CS2: Computer Science Level 2

 Programming in Python

student_age = {19, 20, 15, 19, 16, 21, 17}

student_age

{15, 16, 17, 19, 20, 21}

type(student_age)

<class ‘set’>

You will see that our initial elements in student age are 19, 20, 15, 19, 16, 21, and 17 but set has

removed all the duplicates and we now left with the elements 15, 16, 17, 19, 20, and 21

The len() function

We can get the number of elements in a set by using len() function.

Examples

len(student_age)

6

myset= {90, 2.5, 'Aaden', 123, 0.75, True, False, 'Adhra', True, "No"}

len(myset)

9

Indexing and Slicing

Since, set are unordered collection of unique elements, indexing has no meaning. Hence, the

slicing operator [] will not work.

students_age = {19, 20, 15, 16, 21, 17}

students_age[1]

CS2: Computer Science Level 2

 Programming in Python

As you can see, that throws an error. Since indexing is not working, then element in a set is not

replaceable.

Adding element to a set

Since set is mutable, hence it is possible to add element to an existing set by using .add() attribute.

If the element is already present in the set, then the function will ignore adding that element.

Example 1

student_age = {19, 20, 15, 16, 21, 17}

student_age.add(18)

student_age

{15, 16, 17, 18, 19, 20, 21}

Example 2

myset= {"Gurey", "Guuleed", "Jamal", "Ruth", "Habsade", "Habtom"}

myset

{‘Jamal’, ‘Habtom’, ‘Habsade’, ‘Gurey’, ‘Guuleed’, ‘Ruth’}

len(myset)

6

myset.add("Juma")

myset

{‘Jamal’, ‘Habtom’, ‘Habsade’, ‘Gurey’, ‘Juma’, ‘Guuleed’, ‘Ruth’}

len(myset)

7

Basic Set Operations

We can perform set operations like union, intersection, compliment of two sets. As you know, sets

have unique values. They eliminate duplicates. We can represent the relationship between sets in

a diagram known as a Venn diagram.

CS2: Computer Science Level 2

 Programming in Python

Union of sets

The union of set A and B, denoted by 𝐴 ∪ 𝐵, is the collection of all elements in both sets without

any duplication of elements.

To get the union of two sets, we put | at the middle of the two sets.

Example 1

CS2: Computer Science Level 2

 Programming in Python

A = {7, 2, 5}

B = {2, 5, 1, 8}

What is the union of A and B?

AunionB = A | B

print(AunionB)

{1, 2, 5, 7, 8}

We can also use .union() attribute to get the union of a set

AunionB = A.union(B)

print(AunionB)

{1, 2, 5, 7, 8}

Example 2

odd_number = {1, 3, 5, 7, 9}

even_number = {2, 4, 6, 8, 10}

What is the union of set odd_number and even_number?

all_numbers = odd_number | even_number

print(all_numbers)

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Example 3

myfruits = {"Apple", "Banana", "Cherry", "Orange", "Water melon"}

friend_fruit = {"Pineapples", "Grape", "Pawpaw", "Banana", "Mango"}

all_fruits = myfruits | friend_fruit

all_fruits

{‘Mango’, ‘Water melon’, ‘Cherry’, ‘Banana’, ‘Pineapples’, ‘Grape’, ‘Pawpaw’, ‘Orange’,

‘Apple’}

len(all_fruits)

9

My friend and I have 9 fruits altogether.

CS2: Computer Science Level 2

 Programming in Python

Class Activity 8 (Peer to peer review activity)

Intersection

Intersection of two sets A and B, denoted by 𝐴 ∩ 𝐵, is the set containing all elements of A that

also belong to B (or equivalently, all elements of B that also belong to A).

To compute intersection of two in Python, we put & at the middle of the two sets.

Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the discussion

Consider the Venn diagram above:

 represent both sets X and Y in Python

 what is the union of set X and Y?

CS2: Computer Science Level 2

 Programming in Python

Example 1

A = {2, 4, 5, 1, 3}

B = {1, 3, 9, 12}

intersection = A & B

print(intersection)

{1, 3}

We can also use the function .intersection().

intersection = A.intersection(B)

print(intersection)

{1, 3}

Example 2

myfruits = {"Apple", "Banana", "Cherry", "Orange", "Water melon"}

friend_fruits = {"Pineapples", "Grape", "Pawpaw", "Banana", "Mango"}

common_fruit = myfruits & friend_fruit

common_fruit

{‘Banana’}

As you can see, we have only Banana in common.

Class Activity 9 (Peer to peer review activity)

Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the

discussion

Consider the Venn diagram above:

 represent both sets P and Q in Python

 what is the intersection of set X and Y?

CS2: Computer Science Level 2

 Programming in Python

Complement of a set (or set difference)

The complement or set difference of sets A and B, denoted by A – B, is the set of all elements in

A that are not in B.

To compute complement of two sets in Python, we put - at the middle of the two sets.

Example 1

A = {2, 4, 6, 3, 5, 7}

B = {3, 5, 7, 9, 11, 13}

difference = A-B

print(difference)

{2, 4, 6}

We can also use the function .difference().

difference = A.difference(B)

print (difference)

{2, 4, 6}

Example 2

CS2: Computer Science Level 2

 Programming in Python

myfruits = {"Apple", "Banana", "Cherry", "Orange", "Water melon"}

friend_fruits = {"Pineapples", "Grape", "Pawpaw", "Banana", "Mango"}

Fruits that I have that my friend did not have

difference_fruit = myfruits - friend_fruit

difference_fruit

{‘Apple’, ‘Water melon’, ‘Orange’, ‘Cherry’}

The fruits that I have that my friend did not have are Apple, Cherry, Orange, and Water melon.

Class Activity 10 (Peer to Peer Review Activity)

2.3.2 Dictionary

Dictionary is an ordered collection of key-value pairs. That is, it makes use of two elements,

namely, a key and a value. Dictionary is usually used when we have a huge amount of data. We

must know the key before we can retrieve the value.

We can create a dictionary by defining keys and value elements inside a curly bracket {}.

Example 1

my_dictionary = {"Key 1": "Value 1", "Key 2": "Value 2", "Key 3": "Value 3"}

my_dictionary

{‘Key 1’: ‘Value 1’, ‘Key 2’: ‘Value 2’, ‘Key 3’: ‘Value 3’}

type(country)

Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the

discussion

Consider the Venn diagram above:

 represent both sets A and C in Python

 what is the difference of set C and A?

CS2: Computer Science Level 2

 Programming in Python

<class ‘str’>

Example 2

Life expectancy is the average number of years a person is expected to live based on the year of

its birth.

life expectancy in the year 2020

life_expectancy = {"Nigeria": 60, "Kenya": 69, "Uganda": 68, "Ethiopia": 68, "Sudan": 67, "Rwa

nda": 65, "Tanzania": 64, "Somalia": 54}

life_expectancy

{‘Nigeria’: 60, ‘Kenya’: 69, ‘Uganda’: 68, ‘Ethiopia’: 68, ‘Sudan’: 67, ‘Rwanda’: 65,

‘Tanzania’: 64, ‘Somalia’: 54}

type(life_expectancy)

<class ‘dict’>

Example 3

Some countries in the given Africa regions

africa_regions = {"East Africa": ["Ethiopia", "Kenya", "Rwanda", "Somalia", "South Sudan", "U

ganda","Burundi"],
 "North Africa": ["Algeria", "Egypt", "Libya", "Morocco", "Sudan", "Tunisia"],
 "West Africa": ["Nigeria", "Ghana" "Senegal", "Benin", "Liberia", "Mali", "Niger"],
 "Central Africa": ["Angola", "Cameroon", "Chad", "Congo", "DRC", "Gabon"],
 "Southern Africa": ["Botswana", "Eswatini", "Lesotho", "Namibia", "RÈunion", "S

outh Africa"]}

print(africa_regions)

{‘East Africa’: [‘Ethiopia’, ‘Kenya’, ‘Rwanda’, ‘Somalia’, ‘South Sudan’, ‘Uganda’, ‘Burundi’],

‘North Africa’: [‘Algeria’, ‘Egypt’, ‘Libya’, ‘Morocco’, ‘Sudan’, ‘Tunisia’], ‘West Africa’:

[‘Nigeria’, ‘GhanaSenegal’, ‘Benin’, ‘Liberia’, ‘Mali’, ‘Niger’], ‘Central Africa’: [‘Angola’,

‘Cameroon’, ‘Chad’, ‘Congo’, ‘DRC’, ‘Gabon’], ‘Southern Africa’: [‘Botswana’, ‘Eswatini’,

‘Lesotho’, ‘Namibia’, ‘RÈunion’, ‘South Africa’]}

type(africa_regions)

<class ‘dict’>

Dictionary Length

To determine how many items a dictionary has, use the len() function.

CS2: Computer Science Level 2

 Programming in Python

Example 1

life_expectancy = {"Nigeria": 60, "Kenya": 69, "Uganda": 68, "Ethiopia": 68, "Sudan": 67, "Rwanda": 65

,
 "Tanzania": 64, "Somalia": 54}

len(life_expectancy)

8

Example 2

africa_regions = {"East Africa": ["Ethiopia", "Kenya", "Rwanda", "Somalia", "South Sudan", "Uganda",

"Burundi"],
 "North Africa": ["Algeria", "Egypt", "Libya", "Morocco", "Sudan", "Tunisia"],
 "West Africa": ["Nigeria", "Ghana" "Senegal", "Benin", "Liberia", "Mali", "Niger"],
 "Central Africa": ["Angola", "Cameroon", "Chad", "Congo", "DRC", "Gabon"],
 "Southern Africa": ["Botswana", "Eswatini", "Lesotho", "Namibia", "RÈunion", "South Afri

ca"]}

len(africa_regions)

5

Accessing dictionary items

Dictionary items are presented in key: value pairs, and can be referred to by using the key name.

To access a specific value in the dictionary data set, you need to index the right key. Dictionaries

in Python are mutable and the elements in a dictionary can be added, removed, modified, and

changed accordingly.

You can access the items of a dictionary by referring to its key name, inside square brackets. For

example, consider life expectancy dictionary:

life_expectancy = {"Nigeria": 60, "Kenya": 69, "Uganda": 68, "Ethiopia": 68, "Sudan": 67, "Rwanda": 65

, "Tanzania": 64, "Somalia": 54}

To access the value in the key Nigeria, we use:

life_expectancy["Nigeria"]

60

Also, for Ethiopia, we use:

life_expectancy["Ethiopia"]

68

CS2: Computer Science Level 2

 Programming in Python

You cannot access items in a dictionary by index

life_expectancy[1]

Dictionary Methods

Methods in a dictionary are as follows:

 .keys()

 .values()

 .items()

 .updates()

.keys()

The .keys() method will return a list of all the keys in the dictionary.

Example 1

life_expectancy = {"Nigeria": 60, "Kenya": 69, "Uganda": 68, "Ethiopia": 68, "Sudan": 67, "Rwanda": 65

,
 "Tanzania": 64, "Somalia": 54}

life_expectancy.keys()

dict_keys([‘Nigeria’, ‘Kenya’, ‘Uganda’, ‘Ethiopia’, ‘Sudan’, ‘Rwanda’, ‘Tanzania’, ‘Somalia’])

Example 2

africa_regions = {"East Africa": ["Ethiopia", "Kenya", "Rwanda", "Somalia", "South Sudan", "Uganda",

"Burundi"],
 "North Africa": ["Algeria", "Egypt", "Libya", "Morocco", "Sudan", "Tunisia"],
 "West Africa": ["Nigeria", "Ghana" "Senegal", "Benin", "Liberia", "Mali", "Niger"],
 "Central Africa": ["Angola", "Cameroon", "Chad", "Congo", "DRC", "Gabon"],
 "Southern Africa": ["Botswana", "Eswatini", "Lesotho", "Namibia", "RÈunion", "South Africa"]

}

africa_regions.keys()

dict_keys([‘East Africa’, ‘North Africa’, ‘West Africa’, ‘Central Africa’, ‘Southern Africa’])

CS2: Computer Science Level 2

 Programming in Python

.values()

The .values() method will return a list of all the values in the dictionary.

Example 1

life_expectancy = {"Nigeria": 60, "Kenya": 69, "Uganda": 68, "Ethiopia": 68, "Sudan": 67, "Rwanda": 65

,
 "Tanzania": 64, "Somalia": 54}

life_expectancy.values()

dict_values([60, 69, 68, 68, 67, 65, 64, 54])

Example 2

africa_regions = {"East Africa": ["Ethiopia", "Kenya", "Rwanda", "Somalia", "South Sudan", "Uganda",

"Burundi"],
 "North Africa": ["Algeria", "Egypt", "Libya", "Morocco", "Sudan", "Tunisia"],
 "West Africa": ["Nigeria", "Ghana" "Senegal", "Benin", "Liberia", "Mali", "Niger"],
 "Central Africa": ["Angola", "Cameroon", "Chad", "Congo", "DRC", "Gabon"],
 "Southern Africa": ["Botswana", "Eswatini", "Lesotho", "Namibia", "RÈunion", "South Afri

ca"]}

africa_regions.values()

dict_values([[‘Ethiopia’, ‘Kenya’, ‘Rwanda’, ‘Somalia’, ‘South Sudan’, ‘Uganda’, ‘Burundi’],

[‘Algeria’, ‘Egypt’, ‘Libya’, ‘Morocco’, ‘Sudan’, ‘Tunisia’], [‘Nigeria’, ‘GhanaSenegal’,

‘Benin’, ‘Liberia’, ‘Mali’, ‘Niger’], [‘Angola’, ‘Cameroon’, ‘Chad’, ‘Congo’, ‘DRC’, ‘Gabon’],

[‘Botswana’, ‘Eswatini’, ‘Lesotho’, ‘Namibia’, ‘RÈunion’, ‘South Africa’]])

.items()

The items() method will return each item in a dictionary, as tuples in a list.

Example 1

life_expectancy = {"Nigeria": 60, "Kenya": 69, "Uganda": 68, "Ethiopia": 68, "Sudan": 67, "Rwanda": 65

,
 "Tanzania": 64, "Somalia": 54}

life_expectancy.items()

dict_items([(‘Nigeria’, 60), (‘Kenya’, 69), (‘Uganda’, 68), (‘Ethiopia’, 68), (‘Sudan’, 67),

(‘Rwanda’, 65), (‘Tanzania’, 64), (‘Somalia’, 54)])

Example 2

africa_regions = {"East Africa": ["Ethiopia", "Kenya", "Rwanda", "Somalia", "South Sudan", "Uganda",

"Burundi"],
 "North Africa": ["Algeria", "Egypt", "Libya", "Morocco", "Sudan", "Tunisia"],
 "West Africa": ["Nigeria", "Ghana", "Senegal", "Benin", "Liberia", "Mali", "Niger"],

CS2: Computer Science Level 2

 Programming in Python

 "Central Africa": ["Angola", "Cameroon", "Chad", "Congo", "DRC", "Gabon"],
 "Southern Africa": ["Botswana", "Eswatini", "Lesotho", "Namibia", "RÈunion", "South Afri

ca"]}

africa_regions.items()

dict_items([(‘East Africa’, [‘Ethiopia’, ‘Kenya’, ‘Rwanda’, ‘Somalia’, ‘South Sudan’, ‘Uganda’,

‘Burundi’]), (‘North Africa’, [‘Algeria’, ‘Egypt’, ‘Libya’, ‘Morocco’, ‘Sudan’, ‘Tunisia’]),

(‘West Africa’, [‘Nigeria’, ‘Ghana’, Senegal’, ‘Benin’, ‘Liberia’, ‘Mali’, ‘Niger’]), (‘Central

Africa’, [‘Angola’, ‘Cameroon’, ‘Chad’, ‘Congo’, ‘DRC’, ‘Gabon’]), (‘Southern Africa’,

[‘Botswana’, ‘Eswatini’, ‘Lesotho’, ‘Namibia’, ‘RÈunion’, ‘South Africa’])])

.update

The .update() method will update the dictionary with the items from the given argument. The

argument must be an object with key: value pairs.

life_expectancy = {"Nigeria": 60, "Kenya": 69, "Uganda": 68, "Ethiopia": 68, "Sudan": 67, "Rwanda": 65

,
 "Tanzania": 64, "Somalia": 54}

You were given the life expectancy of Burundi as 70. You can add that to the existing dictionary

by using:

life_expectancy.update({"Burundi": 67})

life_expectancy

{‘Nigeria’: 60, ‘Kenya’: 69, ‘Uganda’: 68, ‘Ethiopia’: 68, ‘Sudan’: 67, ‘Rwanda’: 65,

‘Tanzania’: 64, ‘Somalia’: 54, ‘Burundi’: 67}

You can also change the value of a specific item by referring to its key name. Let’s say the

government of Nigeria said that the life expectancy of Nigeria is 70 and not 60. We can change

this by using:

life_expectancy["Nigeria"] = 70

life_expectancy

{‘Nigeria’: 70, ‘Kenya’: 69, ‘Uganda’: 68, ‘Ethiopia’: 68, ‘Sudan’: 67, ‘Rwanda’: 65,

‘Tanzania’: 64, ‘Somalia’: 54}

Another example:

life_expectancy["Eritrea"] = 66

life_expectancy

CS2: Computer Science Level 2

 Programming in Python

{‘Nigeria’: 60, ‘Kenya’: 69, ‘Uganda’: 68, ‘Ethiopia’: 68, ‘Sudan’: 67, ‘Rwanda’: 65,

‘Tanzania’: 64, ‘Somalia’: 54, ‘Burundi’: 67, ‘Eritrea’: 66}

Removing Items in a dictionary

The del keyword removes the item with the specified key name.

Example 1

For example, to delete information about Eritrea in the life expectancy dictionary we use:

del life_expectancy["Eritrea"]

life_expectancy

{‘Nigeria’: 60, ‘Kenya’: 69, ‘Uganda’: 68, ‘Ethiopia’: 68, ‘Sudan’: 67, ‘Rwanda’: 65,

‘Tanzania’: 64, ‘Somalia’: 54, ‘Burundi’: 67}

Example 2

To delete information about Burundi, we use:

del life_expectancy["Burundi"]

life_expectancy

{‘Nigeria’: 60, ‘Kenya’: 69, ‘Uganda’: 68, ‘Ethiopia’: 68, ‘Sudan’: 67, ‘Rwanda’: 65,

‘Tanzania’: 64, ‘Somalia’: 54}

Class Activity 11 (Peer to Peer Review Activity)

 Peer to Peer Interaction

Visit the LMS, locate forum activity and participate in the discussion

Just like the life expectancy data, the number of confirmed COVID-19 cases were also given and shown below:

Burundi 694

Ethiopia 113295

Ghana 52198

Kenya 88380

Nigeria 68937

Rwanda 6129

Somalia 4525

South Sudan 3166

CS2: Computer Science Level 2

 Programming in Python

Class Activity 12

Sudan 19196

Uganda 22499

 Create a dictionary for the given data and name COVID_19

 How many keys are in the data?

 Remove Nigeria from the data

 Add Tanzania with the value 509

 Consider the dictionary:

d = {"fruits": ["apples", "oranges", "pears", "mangoes"],

"vegetables": ["tomatoes", "lettuce", "spinach", "green peppers"],

"meat": ["chicken", "fish", "beef", "ostrich"],

"dairy": ["yogurt", "milk", "cheese", "ice-cream"] }

1. How many keys does d have?

2. List the values of d

3. How do you access spinach using the dictionary d?

4. How do you add a new fruit?

CS2: Computer Science Level 2

 Programming in Python

Summary of Study Unit 2

In this study unit, you have learnt that:

1. Data structure in Python includes list, tuple, set and dictionary

2. input() function can be used to take information from the user and that the value of the

variable taken is always a string data type.

3. + operator is used for string concatenation while * operator is used for string repetition

4. The len() function is used to get the number of characters in a string.

5. This len() function can also be used to get the number of elements in a list, tuple, and set.

	Terminologies, Acronyms and their Meaning
	2.1 String Manipulation in Python
	2.1.1 Python Strings
	2.1.2 String Operations
	2.1.3 Indexing and Slicing
	Indexing
	Slicing

	2.1.4 Basic String Methods
	.upper()
	.lower()
	.capitalize()
	.title()
	.split()

	2.1.5 String formatting
	2.1.6 String interpolation
	2.1.7 Formatting Numbers
	2.1.8 Input and Output function

	2.2 Data Structures in Python – Lists and Tuples
	2.2.1 Lists
	List of integers
	List of float
	List of string
	Mixed lists
	Nested Lists
	The range() function
	The len() function
	Indexing and Slicing
	Mutability of a list

	2.2.2 List Methods
	.append()
	.extend()
	.insert()
	.pop()
	.reverse()
	.sort()
	Class activity 6 (Peer to peer review activity)

	2..2.3 Tuples
	Tuple of integers
	Tuple of float
	Tuple of string
	Mixed Tuple
	Nexted tuple
	The len() function
	Indexing and Slicing
	Immutability of tuple
	Tuple methods
	Why use tuples?
	Class Activity 7 (Peer to peer review activity)

	2.3 Data Structures in Python – Sets and Dictionary
	2.3.1 Sets
	Indexing and Slicing
	Adding element to a set
	Basic Set Operations
	Union of sets
	Class Activity 8 (Peer to peer review activity)
	Intersection
	Class Activity 9 (Peer to peer review activity)
	Complement of a set (or set difference)
	Class Activity 10 (Peer to Peer Review Activity)

	2.3.2 Dictionary
	Accessing dictionary items
	Dictionary Methods
	.keys()
	.values()
	.items()
	.update

	Removing Items in a dictionary
	Class Activity 11 (Peer to Peer Review Activity)
	Class Activity 12

	Summary of Study Unit 2

